您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 冶金工业 > 空气动力学课后答案(北航)
钱第一章1.1解:)(ksm84.259mkR22328315RTp36mkg63.5063032.5984105RTP气瓶中氧气的重量为354.938.915.0506.63Gvg1.2解:建立坐标系根据两圆盘之间的液体速度分布量呈线性分布则离圆盘中心r,距底面为h处的速度为0uknu当n=0时u=0推出0u0当n=h时u=wr推出hwrk则摩擦应力为hwrudnduu上圆盘半径为r处的微元对中心的转矩为drdhwrurrdrdhwrurdAd3则2D0332032Dudrdhru1.4解:在高为10000米处T=288.15-0.006510000=288.15-65=223.15压强为TaTPaP5.2588MKN43.26TaTpap2588.5密度为2588.5TaTamkg4127.0TaTa2588.51-7解:2MKG24.464RTPRTp空气的质量为kg98.662vm第二章2-2解流线的微分方程为yxvdyvdx将vx和vy的表达式代入得ydyxdxyx2dyxy2dx22,将上式积分得y2-x2=c,将(1,7)点代入得c=7因此过点(1,7)的流线方程为y2-x2=482-3解:将y2+2xy=常数两边微分2ydy+2xdx+2ydx=0整理得ydx+(x+y)dy=0(1)将曲线的微分方程yxVdyVdy代入上式得yVx+(x+y)Vy=0由22y2xy2xV得Vx2+Vy2=x2+2xy+y2((2)由(1)(2)得yvyxvyx,2-5解:直角坐标系与柱坐标系的转换关系如图所示速度之间的转换关系为cosvsinvvsinvcosvvryrx由cosr1yvsinyrsinr1xvcosxrrsinyrcosxsinr1sinVcosVcossinVcosVrxvvxrrvxvrrxxxsincosVsinVsinVcosVr1cossinrVcosrVrrrcossinVr1sinVr1sinVr1cossinVr1cossinrVcosrV22rr2rcosr1cosVsinVsincosVsinVryvvVyrVVVVrryxyxycosr1sinVcosVcosVsinVsincosrVsinrVrrrcossinVr1cosVr1cosVr1cossinvVr1cossinrVsinrV22rr2rzVVVr1rVzVyVxVdivzrrzyx2-6解:(1)sinyx3xV2xsinyx3yV2y0yVxVyx此流动满足质量守恒定律(2)sinyx3xV2xsinyx3yV2y0sinyx6yVxV2yx此流动不满足质量守恒定律(3)Vx=2rsinrxy2Vy=-2rsin2ry2233ry2xVx332yr2yyx4yV0ryx4yVxV32yx此流动不满足质量守恒方程(4)对方程x2+y2=常数取微分,得xdydydx由流线方程yxvdyvdx(1)由)(得2rkvvrkv422y2x由(1)(2)得方程3xrkyv3yrkxv25xrkxy3xV25yrkxy3yV0yVxVyx此流动满足质量守恒方程2—7解:0xVzV0ryz23ryz23zVyVzx2727yz同样0yVxVxy该流场无旋2322222223222zyxzyxzyxd21zyxzdzydyxdxdzvdyvdxvdczyx12222—8解:(1)axVxxayVyyazVzz021v;021v;021vzyxyVxVxVzVzVxVxxzxyz(2)0yVxV210xVzV210zVyV21xyzzxyyzx;;位该流线无旋,存在速度(3)azdz2aydyaxdxdzvdyvdxvdzyxcazay21ax212222—9解:曲线x2y=-4,04yxyxf2,切向单位向量22422422y2x2y2xyx4xxy2iyx4xxjfffxifffytttvvvt切向速度分量把x=2,y=-1代入得jx2xiyx2xjyixv2j21i21jyx4x2xyiyx4xxt224224223tvvtj23i23j21i2123tvvtt2—14解:v=180hkm=50sm根据伯努利方程22V21V21ppap驻点处v=0,表示为1531.25pa501.22521V21pap22相对流速为60sm处得表示为75.63760225.12125.1531V21V21pap222第三章3—1解:根据叠加原理,流动的流函数为xyarctg2QyVyx,速度分量是22y22xyxy2QxVyxx2QVyV;驻点A的位置由VAX=0VAy=0求得0yV2QxAA;过驻点的流线方程为2xyarctg2yxyarctg2yyQVQVAAAsin2rxyarctg2yVVQ或即在半无限体上,垂直方向的速度为-sinvrsin2yxy2v222yQQ线面求极值0-sinv-cossinv2ddv22y当0sin0vvminyy2-tgmaxyyvv用迭代法求解2-tg得取最小值时,y1v2183.1139760315.1取最大值时,y2v7817.2463071538.4由-sinvrsin2yxy2v222yQQ-cossinvrcos2vyxx2vv22xQQ可计算出当v6891574.0vv724611.0vxy1,时,6891514.0vv724611.0vxy2,时,合速度vvv2y2xV3—3解:设点源强度为Q,根据叠加原理,流动的函数为xa3-yarctg2axyarctg2axyarctg2两个速度分量为222222a3-yxxyaxaxyaxax2x222222ya3-yxa3-yyaxyyaxy2v对于驻点,0vvyx,解得a33y0xAA,3—4解:设点源的强度为Q,点涡的强度为T,根据叠加原理得合成流动的位函数为Q2lnr22r1r12r1rrVV;速度与极半径的夹角为QarctgarctgrVV3—5根据叠加原理得合成流动的流函数为yayyaarctgayyaarctgV两个速度分量为1yv2222xyaxaxayaxaxaV2222yyvyaxyyaxyaV由驻点0a30,得驻点位置为yxvv零流线方程为0ayyaarctgayyxaarctgyVV对上式进行改变,得aytanay2ayx222当0x时,数值求解得a03065.1y3—9解:根据叠加原理,得合成流动的流函数为ayyarctg2ayyarctg2yvQQ速度分量为2222xyaxax2yaxax2yvvQQ2222yyaxax2yaxax2vQQ由0vvyx得驻点位置为0vaa2,Q过驻点的流线方程为0ayyarctg2ayyarctg2yvQQ上面的流线方程可改写为ayyarctgayyarctgyv2Q222ayxay2ayyarctgayyarctgtanyv2tanQ容易看出y=0满足上面方程当0y时,包含驻点的流线方程可写为Qyv2tanay2ayx222当12vaQ时,包含驻点的流线方程为tanyy21yx223—10解:偶极子位于原点,正指向和负x轴夹角为,其流函数为22yxxsinycos2M当45时22yxxy222M3—11解:圆柱表面上的速度为a2sinv2v222222a4a2sinv4v222222va4av2sin4sin4vv压强分布函数为222pvasin41sin41vv1C第四章4—1解:查表得标准大气的粘性系数为nkg1078.1u565el1023876.11078.16.030225.1uLVR平板上下两面所受的总得摩擦阻力为NSVLRF789.021e664.02224—2解:沿边阶层的外边界,伯努利方程成立代表逆压梯度代表顺压梯度,时;当时当0m0m00m00mmvvv21p12201002xpxpxvxvxvxxpcmmm4—4解:(a)将2xy21y23vv带入(4—90)中的第二式得28039dyvv1vv0xx由牛顿粘性定律uu23yvu0yxw下面求动量积分关系式,因为是平板附面层0dxdv积分关系式可表示为dxdv2w将上述关系式代入积分关系式,得vdxud14013边界条件为x=0时,0积分上式,得平板边界层的厚度沿板长的变化规律64.428039646.0xxx64.4llRR(b)74.164.483xx83dyvv1l0xR(c)由(a)知64.4xxlR(d)646.0xx646.0v21324xx64.4u23lfl2wflwRCRCR)得—由(;(e)单面平板的摩擦阻力为292.1xx292.1sv21bbdxv
本文标题:空气动力学课后答案(北航)
链接地址:https://www.777doc.com/doc-4654089 .html