您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 咨询培训 > 立体几何题型归类总结
1立体几何专题复习一、【知识总结】基本图形1.棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行,由这些面所围成的几何体叫做棱柱。①底面是正多形棱垂直于底面斜棱柱棱柱正棱柱直棱柱其他棱柱②四棱柱底面为平行四边形平行六面体侧棱垂直于底面直平行六面体底面为矩形长方体底面为正方形正四棱柱侧棱与底面边长相等正方体2.棱锥棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。★正棱锥——如果有一个棱锥的底面是正多边形,并且顶点在底面的射影是底面的中心,这样的棱锥叫做正棱锥。3.球球的性质:①球心与截面圆心的连线垂直于截面;★②22rRd(其中,球心到截面的距离为d、球的半径为R、截面的半径为r)★球与多面体的组合体:球与正四面体,球与长方体,球与正方体等的内接与外切.顶点侧面斜高高侧棱底面OCDABHSl侧棱侧面底面E'B'D'C'A'F'BDEAFCrdR球面轴球心半径AOO1BA'C'D'B'CDOABOC'A'Ac2注:球的有关问题转化为圆的问题解决.球面积、体积公式:2344,3SRVR球球(其中R为球的半径)平行垂直基础知识网络★★★平行关系平面几何知识线线平行线面平行面面平行垂直关系平面几何知识线线垂直线面垂直面面垂直判定性质判定推论性质判定判定性质判定面面垂直定义1.,//abab2.,//aabb3.,//aa4.//,aa5.//,平行与垂直关系可互相转化3俯视图二、【典型例题】考点一:三视图1.一空间几何体的三视图如图1所示,则该几何体的体积为_________________.第1题2.若某空间几何体的三视图如图2所示,则该几何体的体积是________________.第2题第3题3.一个几何体的三视图如图3所示,则这个几何体的体积为.4.若某几何体的三视图(单位:cm)如图4所示,则此几何体的体积是.第4题第5题22侧(左)视图222正(主)视图3正视图俯视图112左视图a45.如图5是一个几何体的三视图,若它的体积是33,则a.6.已知某个几何体的三视图如图6,根据图中标出的尺寸(单位:cm),可得这个几何体的体积是.7.若某几何体的三视图(单位:cm)如图所示,则此几何体的体积是3cm8.设某几何体的三视图如图8(尺寸的长度单位为m),则该几何体的体积为_________m3。第7题第8题9.一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个圆,那么这个几何体的侧面积为_________________.图92020正视图20侧视图101020俯视图223221俯视图正(主)视图侧(左)视图2322510.一个三棱柱的底面是正三角形,侧棱垂直于底面,它的三视图及其尺寸如图10所示(单位cm),则该三棱柱的表面积为_____________.图1011.如图11所示,一个空间几何体的主视图和左视图都是边长为1的正方形,俯视图是一个直径为1的圆,那么这个几何体的全面积为_____________.图图11图12图1312.如图12,一个空间几何体的主视图和左视图都是边长为1的正三角形,俯视图是一个圆,那么几何体的侧面积为_____________.13.已知某几何体的俯视图是如图13所示的边长为2的正方形,主视图与左视图是边长为2的正三角形,则其表面积是_____________.14.如果一个几何体的三视图如图14所示(单位长度:cm),则此几何体的表面积是_____________.图1415.一个棱锥的三视图如图,则该棱锥的全面积(单位:2cm)_____________.正视图左视图俯视图正视图俯视图6考点二平行与垂直的证明1.正方体1111ABCD-ABCD,1AA=2,E为棱1CC的中点.(Ⅰ)求证:11BDAE;(Ⅱ)求证://AC平面1BDE;(Ⅲ)求三棱锥A-BDE的体积.2.已知正方体1111ABCDABCD,O是底ABCD对角线的交点.求证:(1)C1O∥面11ABD;(2)1AC面11ABD.3.如图,PA矩形ABCD所在平面,M、N分别是AB和PC的中点.(Ⅰ)求证:MN∥平面PAD;(Ⅱ)求证:MNCD;(Ⅲ)若45PDA,求证:MN平面PCD.NMPDCBAA1D1C1B1AEDCBD1ODBAC1B1A1C74.如图(1),ABCD为非直角梯形,点E,F分别为上下底AB,CD上的动点,且EFCD。现将梯形AEFD沿EF折起,得到图(2)(1)若折起后形成的空间图形满足DFBC,求证:ADCF;(2)若折起后形成的空间图形满足,,,ABCD四点共面,求证://AB平面DEC;5.如图,在五面体ABCDEF中,FA平面ABCD,AD//BC//FE,ABAD,M为EC的中点,N为AE的中点,AF=AB=BC=FE=12AD(I)证明平面AMD平面CDE;(II)证明//BN平面CDE;6.在四棱锥P-ABCD中,侧面PCD是正三角形,且与底面ABCD垂直,已知菱形ABCD中∠ADC=60°,M是PA的中点,O是DC中点.(1)求证:OM//平面PCB;(2)求证:PA⊥CD;(3)求证:平面PAB⊥平面COM.ABCDEF图(1)EBCFDA图(2)AFEBCDMNPDABCOM8考点三线面、面面关系判断题1.已知直线l、m、平面α、β,且l⊥α,mβ,给出下列四个命题:(1)α∥β,则l⊥m(2)若l⊥m,则α∥β(3)若α⊥β,则l∥m(4)若l∥m,则α⊥β其中正确的是__________________.2.m、n是空间两条不同直线,、是空间两条不同平面,下面有四个命题:①,;mnmn, ②,,;mnmn ③,,;mnmn ④,,;mmnn 其中真命题的编号是________(写出所有真命题的编号)。3.l为一条直线,,,为三个互不重合的平面,给出下面三个命题:①,;②,∥;③ll,∥.其中正确的命题有_________________.4.对于平面和共面的直线m、,n(1)若,,mmn则n∥(2)若m∥,n∥,则m∥n(3)若,mn∥,则m∥n(4)若m、n与所成的角相等,则m∥n其中真命题的序号是_____________.5.关于直线m、n与平面与,有下列四个命题:①若//,//mn且//,则//mn;②若,mn且,则mn;③若,//mn且//,则mn;④若//,mn且,则//mn;其中真命题的序号是_________________.
本文标题:立体几何题型归类总结
链接地址:https://www.777doc.com/doc-4654434 .html