您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 高中数学必修二:第二章章末复习课配套课件
本课时栏目开关画一画研一研章末复习课画一画·知识网络、结构更完善本课时栏目开关画一画研一研章末复习课画一画·知识网络、结构更完善本课时栏目开关画一画研一研章末复习课题型一几何中共点、共线、共面问题1.证明共面问题证明共面问题,一般有两种证法:一是由某些元素确定一个平面,再证明其余元素在这个平面内;二是分别由不同元素确定若干个平面,再证明这些平面重合.2.证明三点共线问题证明空间三点共线问题,通常证明这些点都在两个面的交线上,即先确定出某两点在某两个平面的交线上,再证明第三个点是两个平面的公共点,当然必在两个平面的交线上.研一研·题型解法、解题更高效本课时栏目开关画一画研一研章末复习课3.证明三线共点问题证明空间三线共点问题,先证两条直线交于一点,再证明第三条直线经过这点,把问题转化为证明点在直线上的问题.研一研·题型解法、解题更高效本课时栏目开关画一画研一研章末复习课例1如图所示,空间四边形ABCD中,E,F分别为AB,AD的中点,G,H分别在BC,CD上,且BG∶GC=DH∶HC=1∶2.求证:(1)E、F、G、H四点共面;(2)GE与HF的交点在直线AC上.研一研·题型解法、解题更高效证明(1)∵BG∶GC=DH∶HC,∴GH∥BD,又EF∥BD,∴EF∥GH,∴E、F、G、H四点共面.(2)∵G、H不是BC、CD的中点,∴EF≠GH.又EF∥GH,∴EG与FH不平行,则必相交,设交点为M.EG⊂面ABCHF⊂面ACD⇒M∈面ABC且M∈面ACD⇒M在面ABC与面ACD的交线上⇒M∈AC.∴GE与HF的交点在直线AC上.本课时栏目开关画一画研一研章末复习课跟踪训练1如图,O是正方体ABCD-A1B1C1D1上底面ABCD的中心,M是正方体对角线AC1和截面A1BD的交点.求证:O、M、A1三点共线.研一研·题型解法、解题更高效证明∵O∈AC,AC⊂平面ACC1A1,∴O∈平面ACC1A1.∵M∈AC1,AC1⊂平面ACC1A1.∴M∈平面ACC1A1.又已知A1∈平面ACC1A1,即有O、M、A1三点都在平面ACC1A1上,又O、M、A1三点都在平面AB1D上,所以O、M、A1三点都在平面ACC1A1与平面A1BD的交线上,所以O、M、A1三点共线.本课时栏目开关画一画研一研章末复习课题型二空间中的平行问题1.判断或证明线面平行的常用方法:(1)利用线面平行的定义(无公共点);(2)利用线面平行的判定定理(a⊄α,b⊂α,a∥b⇒a∥α);(3)利用面面平行的性质定理(α∥β,a⊂α⇒a∥β);(4)利用面面平行的性质(α∥β,a⊄β,a∥α⇒a∥β).2.证明面面平行的方法:(1)利用面面平行的定义;(2)利用面面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行;(3)垂直于同一条直线的两个平面平行;(4)两个平面同时平行于第三个平面,那么这两个平面平行;(5)利用“线线平行”、“线面平行”、“面面平行”的相互转化.研一研·题型解法、解题更高效本课时栏目开关画一画研一研章末复习课例2如图,E、F、G、H分别是正方体ABCD—A1B1C1D1的棱BC、CC1、C1D1、AA1的中点,求证:(1)GE∥平面BB1D1D;(2)平面BDF∥平面B1D1H.研一研·题型解法、解题更高效证明(1)取B1D1中点O,连接GO,OB,易证OG綊12B1C1,BE綊12B1C1,∴OG綊BE,四边形BEGO为平行四边形.∴OB∥GE.∵OB⊂平面BDD1B1,GE⊄平面BDD1B1,∴GE∥平面BDD1B1.本课时栏目开关画一画研一研章末复习课(2)由正方体性质得B1D1∥BD,研一研·题型解法、解题更高效∵B1D1⊄平面BDF,BD⊂平面BDF,∴B1D1∥平面BDF.连接HB,D1F,易证HBFD1是平行四边形,得HD1∥BF.∵HD1⊄平面BDF,BF⊂平面BDF,∴HD1∥平面BDF.∵B1D1∩HD1=D1,∴平面BDF∥平面B1D1H.本课时栏目开关画一画研一研章末复习课跟踪训练2如图,△ABC为正三角形,EC⊥平面ABC,DB⊥平面ABC,CE=CA=2BD,M是EA的中点,N是EC的中点,求证:平面DMN∥平面ABC.研一研·题型解法、解题更高效证明∵M、N分别是EA与EC的中点,∴MN∥AC,又∵AC⊂平面ABC,MN⊄平面ABC,∴MN∥平面ABC,∵DB⊥平面ABC,EC⊥平面ABC,∴BD∥EC,四边形BDEC为直角梯形,∵N为EC中点,EC=2BD,∴NC綊BD,∴四边形BCND为矩形,∴DN∥BC,又∵DN⊄平面ABC,BC⊂平面ABC,∴DN∥平面ABC,又∵MN∩DN=N,∴平面DMN∥平面ABC.本课时栏目开关画一画研一研章末复习课题型三空间中的垂直关系空间垂直关系的判定方法:(1)判定线线垂直的方法:①计算所成的角为90°(包括平面角和异面直线所成的角);②线面垂直的性质(若a⊥α,b⊂α,则a⊥b).(2)判定线面垂直的方法:①线面垂直定义(一般不易验证任意性);②线面垂直的判定定理(a⊥b,a⊥c,b⊂α,c⊂α,b∩c=M⇒a⊥α);③平行线垂直平面的传递性质(a∥b,b⊥α⇒a⊥α);④面面垂直的性质(α⊥β,α∩β=l,a⊂β,a⊥l⇒a⊥α);⑤面面平行的性质(a⊥α,α∥β⇒a⊥β);研一研·题型解法、解题更高效本课时栏目开关画一画研一研章末复习课⑥面面垂直的性质(α∩β=l,α⊥γ,β⊥γ⇒l⊥γ).(3)面面垂直的判定方法:①根据定义(作两平面构成二面角的平面角,计算其为90°);②面面垂直的判定定理(a⊥β,a⊂α⇒α⊥β).研一研·题型解法、解题更高效本课时栏目开关画一画研一研章末复习课例3如图,在直三棱柱ABC-A1B1C1中,A1B1=A1C1,D,E分别是棱BC,CC1上的点(点D不同于点C),且AD⊥DE,F为B1C1的中点.求证:(1)平面ADE⊥平面BCC1B1;(2)直线A1F∥平面ADE.研一研·题型解法、解题更高效证明(1)因为ABC-A1B1C1是直三棱柱,所以CC1⊥平面ABC.又AD⊂平面ABC,所以CC1⊥AD.又因为AD⊥DE,CC1,DE⊂平面BCC1B1,CC1∩DE=E,所以AD⊥平面BCC1B1.又AD⊂平面ADE,本课时栏目开关画一画研一研章末复习课所以平面ADE⊥平面BCC1B1.研一研·题型解法、解题更高效(2)因为A1B1=A1C1,F为B1C1的中点,所以A1F⊥B1C1.因为CC1⊥平面A1B1C1,且A1F⊂平面A1B1C1,所以CC1⊥A1F.又因为CC1,B1C1⊂平面BCC1B1,CC1∩B1C1=C1,所以A1F⊥平面BCC1B1.由(1)知AD⊥平面BCC1B1,所以A1F∥AD.又AD⊂平面ADE,A1F⊄平面ADE,所以A1F∥平面ADE.本课时栏目开关画一画研一研章末复习课跟踪训练3如图,A,B,C,D为空间四点.在△ABC中,AB=2,AC=BC=2,等边△ADB以AB为轴运动.(1)当平面ADB⊥平面ABC时,求CD;(2)当△ADB转动时,是否总有AB⊥CD?证明你的结论.研一研·题型解法、解题更高效解(1)取AB的中点E,连接DE,CE,因为△ADB是等边三角形,所以DE⊥AB.当平面ADB⊥平面ABC时,因为平面ADB∩平面ABC=AB,所以DE⊥平面ABC,可知DE⊥CE,由已知可得DE=3,EC=1,在Rt△DEC中,CD=DE2+EC2=2.本课时栏目开关画一画研一研章末复习课(2)当△ADB以AB为轴转动时,总有AB⊥CD.研一研·题型解法、解题更高效证明如下:①当D在平面ABC内时,因为AC=BC,AD=BD,所以C,D都在线段AB的垂直平分线上,即AB⊥CD.②当D不在平面ABC内时,由(1)知AB⊥DE.又因AC=BC,所以AB⊥CE.又DE,CE为相交直线,所以AB⊥平面CDE,由CD⊂平面CDE,得AB⊥CD.综上所述,总有AB⊥CD.本课时栏目开关画一画研一研章末复习课题型四空间角问题1.求异面直线所成的角常用平移转化法(转化为相交直线的夹角).2.求直线与平面所成的角常用射影转化法(即作垂线、找射影).3.二面角的平面角的作法常有三种:(1)定义法;(2)垂线法;(3)垂面法.研一研·题型解法、解题更高效本课时栏目开关画一画研一研章末复习课例4在如图所示的几何体中,四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,FC⊥平面ABCD,AE⊥BD,CB=CD=CF.(1)求证:BD⊥平面AED;(2)求二面角F-BD-C的余弦值.研一研·题型解法、解题更高效(1)证明因为四边形ABCD是等腰梯形,AB∥CD,∠DAB=60°,所以∠ADC=∠BCD=120°.又CB=CD,所以∠CDB=30°,因此∠ADB=90°,即AD⊥BD.又AE⊥BD,且AE∩AD=A,AE,AD⊂平面AED,所以BD⊥平面AED.(2)解如图,取BD的中点G,连接CG,FG,由于CB=CD,本课时栏目开关画一画研一研章末复习课因此CG⊥BD.研一研·题型解法、解题更高效又FC⊥平面ABCD,BD⊂平面ABCD,所以FC⊥BD.由于FC∩CG=C,FC,CG⊂平面FCG,所以BD⊥平面FCG,故BD⊥FG,所以∠FGC为二面角F-BD-C的平面角.在等腰三角形BCD中,由于∠BCD=120°,因此CG=12CB.又CB=CF,所以GF=CG2+CF2=5CG,故cos∠FGC=55,因此二面角F-BD-C的余弦值为55.本课时栏目开关画一画研一研章末复习课跟踪训练4如图,正方体的棱长为1,B′C∩BC′=O,求:(1)AO与A′C′所成角的度数;(2)AO与平面ABCD所成角的正切值;(3)平面AOB与平面AOC所成角的度数.研一研·题型解法、解题更高效解(1)∵A′C′∥AC,∴AO与A′C′所成的角就是∠OAC.∵AB⊥平面BC′,OC⊂平面BC′,∴OC⊥AB,又OC⊥BO,AB∩BO=B.∴OC⊥平面ABO.又OA⊂平面ABO,∴OC⊥OA.在Rt△AOC中,OC=22,AC=2,sin∠OAC=OCAC=12,∴∠OAC=30°.即AO与A′C′所成角的度数为30°.本课时栏目开关画一画研一研章末复习课(2)如图,作OE⊥BC于E,连接AE.研一研·题型解法、解题更高效∵平面BC′⊥平面ABCD,∴OE⊥平面ABCD,∴∠OAE为OA与平面ABCD所成的角.在Rt△OAE中,OE=12,AE=12+122=52,∴tan∠OAE=OEAE=55.(3)∵OC⊥OA,OC⊥OB,OA∩OB=O,∴OC⊥平面AOB.又∵OC⊂平面AOC,∴平面AOB⊥平面AOC.即平面AOB与平面AOC所成角的度数为90°.本课时栏目开关画一画研一研章末复习课1.平行问题的转化关系2.直线与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)面与面平行的性质.3.平面与平面平行的主要判定方法(1)定义法;(2)判定定理;(3)推论;(4)a⊥α,a⊥β⇒α∥β.研一研·题型解法、解题更高效本课时栏目开关画一画研一研
本文标题:高中数学必修二:第二章章末复习课配套课件
链接地址:https://www.777doc.com/doc-4673775 .html