您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 薪酬管理 > 东北大学离散数学试卷及答案(2)
离散数学试卷(二)第1页共9页一、填空20%(每小题2分)1、P:你努力,Q:你失败。“除非你努力,否则你将失败”的翻译为;“虽然你努力了,但还是失败了”的翻译为。2、论域D={1,2},指定谓词PP(1,1)P(1,2)P(2,1)P(2,2)TTFF则公式),(xyyPx真值为。2、设S={a1,a2,…,a8},Bi是S的子集,则由B31所表达的子集是。3、设A={2,3,4,5,6}上的二元关系}|,{是质数xyxyxR,则R=(列举法)。R的关系矩阵MR=。5、设A={1,2,3},则A上既不是对称的又不是反对称的关系R=;A上既是对称的又是反对称的关系R=。6、设代数系统A,*,其中A={a,b,c},则幺元是;是否有幂等性;是否有对称性。7、4阶群必是群或群。8、下面偏序格是分配格的是。*abcabcabcbbcccb离散数学试卷(二)第2页共9页9、n个结点的无向完全图Kn的边数为,欧拉图的充要条件是。10、公式RQPQPP)(())((的根树表示为。二、选择20%(每小题2分)1、在下述公式中是重言式为()A.)()(QPQP;B.))()(()(PQQPQP;C.QQP)(;D.)(QPP。2、命题公式)()(PQQP中极小项的个数为(),成真赋值的个数为()。A.0;B.1;C.2;D.3。3、设}}2,1{},1{,{S,则S2有()个元素。A.3;B.6;C.7;D.8。4、设}3,2,1{S,定义SS上的等价关系},,,,|,,,{cbdaSSdcSSbadcbaR则由R产生的SS上一个划分共有()个分块。A.4;B.5;C.6;D.9。5、设}3,2,1{S,S上关系R的关系图为离散数学试卷(二)第3页共9页则R具有()性质。A.自反性、对称性、传递性;B.反自反性、反对称性;C.反自反性、反对称性、传递性;D.自反性。6、设,为普通加法和乘法,则(),,S是域。A.},,3|{QbabaxxSB.},,2|{ZbanxxSC.},12|{ZnnxxSD.}0|{xZxxS=N。7、下面偏序集()能构成格。8、在如下的有向图中,从V1到V4长度为3的道路有()条。A.1;B.2;C.3;D.4。9、在如下各图中()欧拉图。10、设R是实数集合,“”为普通乘法,则代数系统R,×是()。离散数学试卷(二)第4页共9页A.群;B.独异点;C.半群。三、证明46%1、设R是A上一个二元关系,)},,,(),(|,{RbcRcaAcAbabaS且有对于某一个试证明若R是A上一个等价关系,则S也是A上的一个等价关系。(9分)2、用逻辑推理证明:所有的舞蹈者都很有风度,王华是个学生且是个舞蹈者。因此有些学生很有风度。(11分)3、若BAf:是从A到B的函数,定义一个函数ABg2:对任意Bb有)})(()(|{)(bxfAxxbg,证明:若f是A到B的满射,则g是从B到A2的单射。(10分)4、若无向图G中只有两个奇数度结点,则这两个结点一定连通。(8分)5、设G是具有n个结点的无向简单图,其边数2)2)(1(21nnm,则G是Hamilton图(8分)四、计算14%1、设Z6,+6是一个群,这里+6是模6加法,Z6={[0],[1],[2],[3],[4],[5]},试求出Z6,+6的所有子群及其相应左陪集。(7分)2、权数1,4,9,16,25,36,49,64,81,100构造一棵最优二叉树。(7分)离散数学试卷(二)第5页共9页一、填空20%(每小题2分)1、QP;QP2、T3、},,,,{876540001111131aaaaaBB4、R={2,2,2,3,2,4,2,5,2,6,3,2,3,3,3,4,3,5,3,6,4,5,4,6,5,2,5,3,5,4,5,5,5,6};00000111111100011111111115、R={1,2,1,3,2,1};R={1,1,2,2,3,3}6、a;否;有7、Klein四元群;循环群8、B9、)1(21nn;图中无奇度结点且连通10、二、选择20%(每小题2分)题目12345678910答案B、DD;DDBDABBBB、C三、证明46%1、(9分)(1)S自反的Aa,由R自反,),(),(RaaRaa,Saa,(2)S对称的传递对称定义RSabRRbcRcaSRbcRcaSbaAba,),(),(),(),(,,(3)S传递的离散数学试卷(二)第6页共9页定义传递SScaRRcbRbaRceRebRbdRdaScbSbaAcba,),(),(),(),(),(),(,,,,由(1)、(2)、(3)得;S是等价关系。2、11分证明:设P(x):x是个舞蹈者;Q(x):x很有风度;S(x):x是个学生;a:王华上述句子符号化为:前提:))()((xQxPx、)()(aPaS结论:))()((xQxSx……3分①)()(aPaSP②))()((xQxPxP③)()(aQaPUS②④)(aPT①I⑤).(aQT③④I⑥)(aST①I⑦)()(aQaST⑤⑥I⑧)()((xQxSxEG⑦……11分3、10分证明:)(,,2121bbBbbAaaf21,满射21212211,),()(,)(,)(aafafafbafbaf是函数由于且使)()()(),()(),()})(()(|{)()},)(()(|{)(21122122112211bgbgbgabgabgabgabxfAxxbgbxfAxxbg但又为单射任意性知由gbb,,21。4、8分证明:设G中两奇数度结点分别为u和v,若u,v不连通,则G至少有两个连通分支G1、G2,使得u和v分别属于G1和G2,于是G1和G2中各含有1个奇数度结点,这与图论基本定理矛盾,因而u,v一定连通。5、8分证明:证G中任何两结点之和不小于n。离散数学试卷(二)第7页共9页反证法:若存在两结点u,v不相邻且1)()(nvdud,令},{1vuV,则G-V1是具有n-2个结点的简单图,它的边数)1(2)2)(1(21'nnnm,可得1)3)(2(21'nnm,这与G1=G-V1为n-2个结点为简单图的题设矛盾,因而G中任何两个相邻的结点度数和不少于n。所以G为Hamilton图.四、计算14%1、7分解:子群有{[0]},+6;{[0],[3]},+6;{[0],[2],[4]},+6;{Z6},+6{[0]}的左陪集:{[0]},{[1]};{[2]},{[3]};{[4]},{[5]}{[0],[3]}的左陪集:{[0],[3]};{[1],[4]};{[2],[5]}{[0],[2],[4]}的左陪集:{[0],[2],[4]};{[1],[3],[5]}Z6的左陪集:Z6。2、7分IndustrialDesignerDearMr.WangThankyouforgivingmeachancetoapplyforthisjob.Iwritethise-mailtoyouforintroducingmyself,soyoucanknowmewell.ThenyouwillfindIwouldbethebestonforthisjob.Youpositionrequirestopuniversity,BachelororaboveinIndustrialdesignorequivalentfield.IfeelthatIamcompetenttomeettherequ--------------------------.......................................................................................................................................................................................-.++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++离散数学试卷(二)第8页共9页+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++-------------------++
本文标题:东北大学离散数学试卷及答案(2)
链接地址:https://www.777doc.com/doc-4679174 .html