您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 七年级下册数学《不等式与不等式组》认识不等式-知识点整理
认识不等式一、本节学习指导本节中不等式与方程的结合是考试的亮点,大家一定要把握住。多注意下面列出来的一些常见关键词,比如不大于等等,看到这些要能挖掘出里面的隐含条件。二、知识要点(一)、不等式1、概念:利用不等符号连接的式子叫不等式。不等符号有:、、≥、≤、≠注:1、有些不等式中不含有未知数,有些不等式中含有未知数。要与方程加以区别。含有未知数的等式叫方程。比如2x+5=0是方程,而2x+50是不等式。2、一些常见关键词的隐含条件:“不大于、最多”就表示“小于等于”,不要把等于忘记了,符号:≤“不超过”也表示“小于等于”符号:≤“不小于、至少”表示“大于等于”符号:≥“不是正数、非正数”表示“0和负数”符号:≤0“非负数、不是负数”表示“0和正数”符号:≥02、一元一次不等式:含有一个未知数,且未知数的次数是1的不等式,叫一元一次不等式。【重点】不等式的解集:能使不等式成立的未知数的取值范围,叫这个不等式的解的集合,简称解集。而求不等式解集的过程叫做解不等式。例:下列哪个数不是不等式5x-36的解()A、1B、2C、-1D、-23、不等式的性质:【重点】性质①、不等式左右两边加(减)同一个数(式),不等式仍然成立(不等号的方向不变);性质②、不等式左右两边乘以(除以)同一个正数,不等式仍然成立(不等号的方向不变);性质③、不等式左右两边乘以(除以)同一个负数,不等号的方向改变。注:不等式左右两边同乘或同除以一个数或已知符号的式子时,这个数或式子的值绝对不能是零,否则无意义;注意:要与等式的性质相区别:最大区别就是不等式两边同时乘以或除以一个负数时,不等号要改变方向。4、不等式与方程、方程组的结合:【重点】用例题来说明:5、解一元一次不等式的方法与步骤:同于解一元一次方程,都是:去分母→去括号→移项→合并同类项→未知数系数化为1注:①、去分母时,注意每一项都要乘到,特别是本身没有分母的项;去括号时,注意括号前面如果是负号时,去掉括号后,各项都要改变符号。②、解不等式时,常把小数系数化为分数系数以简化计算,统一系数形式后,再按一般的解一元一次不等式步骤解题即可。例:解不等式:(2x-1)/3-0.5×(3x-5)-(x+1)/6+1.250(二)、实际问题与一元一次不等式:【重点】列不等式解实际应用问题,和列方程解实际应用问题一样,基本思路都是:审→设→列→解→答。其中,审题与找出题中的不等量关系是列一元一次不等式的关键,找题中不等关系时要着重理解题中的关键字、句,如“便宜”、“提前”、“不超过”、“不低于”、“至多”等等。此外,解出不等式的解集后,要加以检验,看所得的解集符不符题目的实际意义。例1、导火线的燃烧速度是每秒0.7cm,爆破员点燃后跑开的速度是每秒5m,为了点火后跑到130m以外的安全地带,问导火线至少应有多长(精确到1cm)?分析:导火线燃烧的时间只要大于或等于人跑到安全地带的时间就可以了。例2、某人10点10分离家赶11点整的火车,已知他家离车站10公里,他离家后先以每小时3公里的速度走了5分钟,然后乘公共汽车去车站,问公共汽车至少每小时行多少公里才能不误当次火车?分析:路的时间为5分钟化为小时,设公共汽车的速度为x公里/小时,用总路程-走路的路程计算出坐车的路程,用路程÷速度表示出坐车的时间,根据用走路的时间+坐公共汽车的时间小于等于5/6小时(50分钟化为小时)列出不等式,求出不等式的解集即可得到满足题意的速度。三、经验之谈:这一节的知识点无论是单独命题还是和其他知识点搀和起来命题,占得分值都比较大。希望同学们多做练习,特别是不等式与方程的结合更是考试的亮点,希望能把握住。多注意上面列出来的一些常见关键词,比如不大于等等,看到这些要能挖掘出里面的隐含条件。祝同学们学习这一章一切都进行得顺利!本文由索罗学院整理
本文标题:七年级下册数学《不等式与不等式组》认识不等式-知识点整理
链接地址:https://www.777doc.com/doc-4681406 .html