您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 新人教版八年级下数学第一次月考有答案
2014年3月初中数学组卷一.选择题(共12小题)1.(2013•盐城)若式子在实数范围内有意义,则x的取值范围是()A.x≥3B.x≤3C.x>3D.x<32.(2011•烟台)如果,则()A.a<B.a≤C.a>D.a≥3.(2010•日照)如果=a+b(a,b为有理数),那么a+b等于()A.2B.3C.8D.104.(2013•柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为()A.B.C.D.5.(2012•济宁)如图,在平面直角坐标系中,点P坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间B.3和4之间C.﹣5和﹣4之间D.4和5之间6.(2012•六盘水)下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x7.(2012•怀化)等腰三角形的底边长为6,底边上的中线长为4,它的腰长为()A.7B.6C.5D.48.(2013•济南)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)为()A.12mB.13mC.16mD.17m9.(2009•乐山)如图,一圆锥的底面半径为2,母线PB的长为6,D为PB的中点.一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为()A.B.2C.3D.310.(2013•绥化)已知:如图在△ABC,△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E三点在同一条直线上,连接BD,BE.以下四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=45°;④BE2=2(AD2+AB2),其中结论正确的个数是()A.1B.2C.3D.411.分别以下列四组数为一个三角形的边长(1)1,2,3;(2)3,4,5;(3)5,12,13;(4)6,8,10.其中能组成直角三角形的有()A.4组B.3组C.2组D.1组12.(2012•十堰)如图,O是正△ABC内一点,OA=3,OB=4,OC=5,将线段BO以点B为旋转中心逆时针旋转60°得到线段BO′,下列结论:①△BO′A可以由△BOC绕点B逆时针旋转60°得到;②点O与O′的距离为4;③∠AOB=150°;④S四边形AOBO′=6+3;⑤S△AOC+S△AOB=6+.其中正确的结论是()A.①②③⑤B.①②③④C.①②③④⑤D.①②③二.填空题(共6小题)13.(2012•德阳)有下列计算:①(m2)3=m6,②,③m6÷m2=m3,④,⑤,其中正确的运算有_________.14.如图,将一个正方形分割成面积分别为S(平方单位)和3S(平方单位)的两个小正方形和两个长方形,那么图中两个长方形的面积和是_________(平方单位).15.(2002•黄石)下列各组二次根式:①和;②和;③2b和b.其中第_________是同类二次根式.16.(2013•镇江)如图,五边形ABCDE中,AB⊥BC,AE∥CD,∠A=∠E=120°,AB=CD=1,AE=2,则五边形ABCDE的面积等于_________.17.(2013•莆田)如图是一株美丽的勾股树,其中所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A、B、C、D的面积分别为2,5,1,2.则最大的正方形E的面积是_________.18.(2010•北海)如图,在直角坐标系xoy中,∠OA0A1=90°,OA0=A0A1=1,以OA1为直角边作等腰Rt△OA1A2,再以OA2为直角边作等腰Rt△OA2A3,…,以此类推,则A21点的坐标为_________.三.解答题(共8小题)19.(2013•济宁)计算:(2﹣)2012•(2+)2013﹣2﹣()0.20.(2012•遵义)计算:(﹣1)101+(π﹣3)0+()﹣1﹣.21.(2012•襄阳)先化简,再求值:,其中a=,b=.22.(2013•包头)如图,一根长6米的木棒(AB),斜靠在与地面(OM)垂直的墙(ON)上,与地面的倾斜角(∠ABO)为60°.当木棒A端沿墙下滑至点A′时,B端沿地面向右滑行至点B′.(1)求OB的长;(2)当AA′=1米时,求BB′的长.23.如图,在矩形ABCD中,AB=6,BC=8,将矩形纸片沿BD折叠,使点A落在点E处,设DE与BC相交于点F,(1)判断△BDF的形状,并说明理由;(2)求BF的长.24.(2012•广元)如图,A、B两座城市相距100千米,现计划要在两座城市之间修筑一条高等级公路(即线段AB).经测量,森林保护区中心P点在A城市的北偏东30°方向,B城市的北偏西45°方向上.已知森林保护区的范围在以P为圆心,50千米为半径的圆形区域内.请问:计划修筑的这条高等级公路会不会穿越森林保护区?为什么?25.(2013•黔西南州)阅读材料:小明在学习二次根式后,发现一些含根号的式子可以写成另一个式子的平方,如3+=(1+)2.善于思考的小明进行了以下探索:设a+b=(m+n)2(其中a、b、m、n均为整数),则有a+b=m2+2n2+2mn.∴a=m2+2n2,b=2mn.这样小明就找到了一种把类似a+b的式子化为平方式的方法.请你仿照小明的方法探索并解决下列问题:(1)当a、b、m、n均为正整数时,若a+b=,用含m、n的式子分别表示a、b,得:a=_________,b=_________;(2)利用所探索的结论,找一组正整数a、b、m、n填空:_________+_________=(_________+_________)2;(3)若a+4=,且a、m、n均为正整数,求a的值?26.仔细观察图,认真分析各式,然后解答问题:(1)请用含有n(n是正整数)的等式表示上述变化规律;(2)推算出OA10的长(3)求出S12+S22+S32+…+S102的值.2014年3月niuniu的初中数学组卷参考答案与试题解析一.选择题(共12小题)1.(2013•盐城)若式子在实数范围内有意义,则x的取值范围是()A.x≥3B.x≤3C.x>3D.x<3考点:二次根式有意义的条件.1082555分析:根据被开方数大于等于0列式进行计算即可得解.解答:解:根据题意得,x﹣3≥0,解得x≥3.故选A.点评:本题考查的知识点为:二次根式的被开方数是非负数.2.(2011•烟台)如果,则()A.a<B.a≤C.a>D.a≥考点:二次根式的性质与化简.1082555专题:计算题.分析:由已知得2a﹣1≤0,从而得出a的取值范围即可.解答:解:∵,∴1﹣2a≥0,解得a≤.故选B.点评:本题考查了二次根式的化简与求值,是基础知识要熟练掌握.3.(2010•日照)如果=a+b(a,b为有理数),那么a+b等于()A.2B.3C.8D.10考点:二次根式的乘除法.1082555分析:首先根据完全平方公式将展开,然后与等号右边比较,得出a、b的值,从而求出a+b的值.解答:解:∵=6+4,=a+b,∴a=6,b=4,∴a+b=6+4=10.故选D.点评:本题主要考查了完全平方公式的计算,以及有理数等于有理数,无理数等于无理数的知识.4.(2013•柳州)在△ABC中,∠BAC=90°,AB=3,AC=4.AD平分∠BAC交BC于D,则BD的长为()A.B.C.D.考点:角平分线的性质;三角形的面积;勾股定理.1082555专题:压轴题.分析:根据勾股定理列式求出BC,再利用三角形的面积求出点A到BC上的高,根据角平分线上的点到角的两边的距离相等可得点D到AB、AC上的距离相等,然后利用三角形的面积求出点D到AB的长,再利用△ABD的面积列式计算即可得解.解答:解:∵∠BAC=90°,AB=3,AC=4,∴BC===5,∴BC边上的高=3×4÷5=,∵AD平分∠BAC,∴点D到AB、AC上的距离相等,设为h,则S△ABC=×3h+×4h=×5×,解得h=,S△ABD=×3×=BD•,解得BD=.故选A.点评:本题考查了角平分线的性质,三角形的面积,勾股定理,利用三角形的面积分别求出相应的高是解题的关键.5.(2012•济宁)如图,在平面直角坐标系中,点P坐标为(﹣2,3),以点O为圆心,以OP的长为半径画弧,交x轴的负半轴于点A,则点A的横坐标介于()A.﹣4和﹣3之间B.3和4之间C.﹣5和﹣4之间D.4和5之间考点:勾股定理;估算无理数的大小;坐标与图形性质.1082555专题:探究型.分析:先根据勾股定理求出OP的长,由于OP=OA,故估算出OP的长,再根据点A在x轴的负半轴上即可得出结论.解答:解:∵点P坐标为(﹣2,3),∴OP==,∵点A、P均在以点O为圆心,以OP为半径的圆上,∴OA=OP=,∵9<13<16,∴3<<4.∵点A在x轴的负半轴上,∴点A的横坐标介于﹣4和﹣3之间.故选A.点评:本题考查的是勾股定理及估算无理数的大小,根据题意利用勾股定理求出OP的长是解答此题的关键.6.(2012•六盘水)下列计算正确的是()A.B.(a+b)2=a2+b2C.(﹣2a)3=﹣6a3D.﹣(x﹣2)=2﹣x考点:完全平方公式;去括号与添括号;幂的乘方与积的乘方;二次根式的加减法.1082555分析:利用完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质进行计算后即可确定答案.解答:解:A、不是同类二次根式,因此不能进行运算,故本答案错误;B、(a+b)2=a2+b2+2ab,故本答案错误;C、(﹣2a)3=﹣8a3,故本答案错误;D、﹣(x﹣2)=﹣x+2=2﹣x,故本答案正确;故选D.点评:本题考查了完全平方公式、去括号与添括号法则、幂的乘方与积的乘方及二次根式的加减法等性质,属于基本运算,要求学生必须掌握.7.(2012•怀化)等腰三角形的底边长为6,底边上的中线长为4,它的腰长为()A.7B.6C.5D.4考点:勾股定理;等腰三角形的性质.1082555专题:压轴题.分析:根据等腰三角形的性质可知BC上的中线AD同时是BC上的高线,根据勾股定理求出AB的长即可.解答:解:∵等腰三角形ABC中,AB=AC,AD是BC上的中线,∴BD=CD=BC=3,AD同时是BC上的高线,∴AB==5,故选C.点评:本题考查勾股定理及等腰三角形的性质.解题关键是得出中线AD是BC上的高线,难度适中.8.(2013•济南)如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度为(滑轮上方的部分忽略不计)为()A.12mB.13mC.16mD.17m考点:勾股定理的应用.1082555专题:应用题.分析:根据题意画出示意图,设旗杆高度为x,可得AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中利用勾股定理可求出x.解答:解:设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,解得:x=17,即旗杆的高度为17米.故选D.点评:本题考查了勾股定理的应用,解答本题的关键是构造直角三角形,构造直角三角形的一般方法就是作垂线.9.(2009•乐山)如图,一圆锥的底面半径为2,母线PB的长为6,D为PB的中点.一只蚂蚁从点A出发,沿着圆锥的侧面爬行到点D,则蚂蚁爬行的最短路程为()A.B.2C.3D.3考点:平面展开-最短路径问题.1082555分析:要求蚂蚁爬行的最短距离,需将圆锥的侧面展开,进而根据“两点之间线段最短”得出结果.解答:解:由题意知,底面圆的直径AB=4,故底面周长等于4π.设圆锥的侧面展开后的扇形圆心角为n°,根据底面周长等于展开后扇形的弧长得4π=,解得n=120°,所以展开图中∠APD=120°÷2=60°,因为半径PA=PB,∠APB=60°,故三
本文标题:新人教版八年级下数学第一次月考有答案
链接地址:https://www.777doc.com/doc-4684019 .html