您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 高数(工)1、A1测试卷(函数、极限、连续)解答
第1页共5页上海应用技术学院2012—2013学年第一学期《高等数学(工)1、A1》测试卷(函数、极限、连续)解答一.单项选择题(每小题2分,共10分)1.对31202coslimxxx,下列说法正确的是(A).A.等于0B.等于32C.为无穷大D.不存在,但不是无穷大2.当0x时,下列函数为无穷小量的是(C).A.xxxcosB.xxsinC.xx2sin2D.121x3.设2110021)(2xxxxxxxf则)(xf在(C).A.1,0xx处都连续B.1,0xx处都间断C.0x处间断,1x处连续D.0x处连续,1x处间断4.,11)(11xxeexf点0x是)(xf的(B).A..可去间断点B..跳跃间断点C.无穷间断点D..连续点5.设()fx在,上连续,,ab为任意常数,且ab,则()fx必能取到最大值和最小值的区间是(D).A.,B.[,)abC.(,]abD.[,]ab二.填空题(每小题3分,共15分)6.0131limsin2xxx34.7.设2limxxxkex,则k12.第2页共5页8.当0x时,12axe与)31ln(xx是等价无穷小,则常数a3.9.设102cos()2cossin0xxfxxkxxx在点0x处连续,则k2.10.在区间3(0,)2内,函数2cos()65sinxfxxxx的间断点个数为4.三.计算题(每小题7分,共56分)11.求极限lim(1)[ln(1)ln]nnnn.解:lim(1)[ln(1)ln]nnnn11limln1nnn.............................(3分)11lnlim11nnnn...................(5分)ln1e......................................(7分)12.已知limnnu存在,且222limnnnunnnu,试求nnulim.解:设limnnuA2lim22nAnnnA.........................(2分)而222222lim2lim2nnnnnnnnnnnnnn....................(4分)2lim1211nn...................................(6分)12AA,即得lim1nnuA.......................................(7分)13.求极限3211lim2xxxx.解:3211lim2xxxx21(1)(1)lim(1)(2)xxxxxx..................................(3分)第3页共5页211lim2xxxx.......................................(4分)2(1)(1)1112....................................(7分)14.求极限302sinsin2limxxxx.解:302sinsin2limxxxx302sin(1cos)limxxxx..............................(3分)230122limxxxx......................................(5分)1................................................(7分)15.求极限251lim32xxxx.解:251lim32xxxx511lim23xxxx.....................................(4分)51lim12lim3xxxxx..................................(5分)13................................................(7分)16.求极限01coslim(1)(11)xxxex.解:当0x时,211cos2xx,1xex,1112xx.................(3分)01coslim(1)(11)xxxex2012lim12xxxx.......................................(5分)1..................................................(7分)第4页共5页17.已知11()xxfxx,试补充定义)0(f,使得)(xf在0x处连续.解:为了使)(xf在0x处连续,必须满足0lim()(0)xfxf.....................(1分)0011lim()limxxxxfxx01111lim11xxxxxxxx.......(3分)02lim111xxx...........................................(5分)所以应补充定义(0)1f,就能使得)(xf在0x处连续........................(7分)18.讨论函数221()32xfxxx间断点的类型.解:函数)(xf的间断点为1x,2x.....................................(2分)2211111lim()limlim2322xxxxxfxxxx...............................(4分)2222211lim()limlim322xxxxxfxxxx...............................(6分)所以,1x是函数)(xf的可去间断点,2x是函数)(xf的无穷间断点........(7分)四.综合题(第19题9分,第20题10分)19.设函数1)(ln3)(2bexabxxf30xeexex,试确定a和b,使)(xf在(0,3]连续.解:为了使)(xf在(0,3]连续,只要使)(xf在xe处连续,即满足lim()()xefxfea.................................................(2分)lim()lim3ln3xexefxxbb...........................................(4分)2lim()lim11xexefxxebb....................................(6分)由lim()()xefxfea31bba................................(8分)第5页共5页2a,1b.........................................................(9分)20.设函数)(xf与)(xg都在]1,0[上连续,且)0()0(gf,)1()1(gf,试证明曲线)(xfy与曲线)(xgy在)1,0(内一定有交点.证明:设)()()(xgxfxF,则)(xF在1,0上连续,........................(3分)0)0()0()0(gfF,0)1()1()1(gfF.........................(5分)0)1()0(FF,根据零点定理,至少存在)1,0(,使0)(F,..........(8分)即)()(gf,因此,曲线)(xfy与曲线)(xgy在)1,0(内一定有交点.....(10分)
本文标题:高数(工)1、A1测试卷(函数、极限、连续)解答
链接地址:https://www.777doc.com/doc-4693876 .html