您好,欢迎访问三七文档
实用文档文案大全高考数学选择题的解题策略解答选择题的基本策略是准确、迅速。准确是解答选择题的先决条件,选择题不设中间分,一步失误,造成错选,全题无分,所以应仔细审题、深入分析、正确推演、谨防疏漏,确保准确;迅速是赢得时间获取高分的必要条件,对于选择题的答题时间,应该控制在不超过40分钟左右,速度越快越好,高考要求每道选择题在1~3分钟内解完,要避免“超时失分”现象的发生。高考中的数学选择题一般是容易题或中档题,个别题属于较难题,当中的大多数题的解答可用特殊的方法快速选择。解选择题的基本思想是既要看到各类常规题的解题思想,但更应看到选择题的特殊性,数学选择题的四个选择支中有且仅有一个是正确的,因而,在解答时应该突出一个“选”字,尽量减少书写解题过程,要充分利用题干和选择支两方面提供的信息,依据题目的具体特点,灵活、巧妙、快速地选择解法,以便快速智取,这是解选择题的基本策略。(一)数学选择题的解题方法1、直接法:就是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。运用此种方法解题需要扎实的数学基础。例1、某人射击一次击中目标的概率为0.6,经过3次射击,此人至少有2次击中目标的概率为()12527.12536.12554.12581.DCBA解析:某人每次射中的概率为0.6,3次射击至少射中两次属独立重复实验。12527)106(104)106(333223CC故选A。例2、有三个命题:①垂直于同一个平面的两条直线平行;②过平面α的一条斜线l有且仅有一个平面与α垂直;③异面直线a、b不垂直,那么过a的实用文档文案大全任一个平面与b都不垂直。其中正确命题的个数为()A.0B.1C.2D.3解析:利用立几中有关垂直的判定与性质定理对上述三个命题作出判断,易得都是正确的,故选D。例3、已知F1、F2是椭圆162x+92y=1的两焦点,经点F2的的直线交椭圆于点A、B,若|AB|=5,则|AF1|+|BF1|等于()A.11B.10C.9D.16解析:由椭圆的定义可得|AF1|+|AF2|=2a=8,|BF1|+|BF2|=2a=8,两式相加后将|AB|=5=|AF2|+|BF2|代入,得|AF1|+|BF1|=11,故选A。例4、已知log(2)ayax在[0,1]上是x的减函数,则a的取值范围是()A.(0,1)B.(1,2)C.(0,2)D.[2,+∞)解析:∵a0,∴y1=2-ax是减函数,∵log(2)ayax在[0,1]上是减函数。∴a1,且2-a0,∴1a2,故选B。2、特例法:就是运用满足题设条件的某些特殊数值、特殊位置、特殊关系、特殊图形、特殊数列、特殊函数等对各选择支进行检验或推理,利用问题在某一特殊情况下不真,则它在一般情况下也不真的原理,由此判明选项真伪的方法。用特例法解选择题时,特例取得愈简单、愈特殊愈好。(1)特殊值例5、过抛物线2yax(0)a的焦点F作一直线交抛物线于P,Q两点,若线段PF与FQ的长分别为p,q,则11pq等于()A.4aB.2aC.aD.12a实用文档文案大全解:若用常规方法,运算量很大,不妨设PQ∥x轴,则12pqa,∴11pq=4a.故选A.例6、一个等差数列的前n项和为48,前2n项和为60,则它的前3n项和为()A.-24B.84C.72D.36解析:结论中不含n,故本题结论的正确性与n取值无关,可对n取特殊值,如n=1,此时a1=48,a2=S2-S1=12,a3=a1+2d=-24,所以前3n项和为36,故选D。(2)特殊函数例7、如果奇函数f(x)是[3,7]上是增函数且最小值为5,那么f(x)在区间[-7,-3]上是()A.增函数且最小值为-5B.减函数且最小值是-5C.增函数且最大值为-5D.减函数且最大值是-5解析:构造特殊函数f(x)=35x,虽然满足题设条件,并易知f(x)在区间[-7,-3]上是增函数,且最大值为f(-3)=-5,故选C。例8、定义在R上的奇函数f(x)为减函数,设a+b≤0,给出下列不等式:①f(a)·f(-a)≤0;②f(b)·f(-b)≥0;③f(a)+f(b)≤f(-a)+f(-b);④f(a)+f(b)≥f(-a)+f(-b)。其中正确的不等式序号是()A.①②④B.①④C.②④D.①③解析:取f(x)=-x,逐项检查可知①④正确。故选B。(3)特殊数列例9、已知等差数列{}na满足121010aaa,则有()A、11010aaB、21020aaC、3990aaD、5151a实用文档文案大全解析:取满足题意的特殊数列0na,则3990aa,故选C。(4)特殊位置例9、过)0(2aaxy的焦点F作直线交抛物线与Q、P两点,若PF与FQ的长分别是q、p,则qp11()A、a2B、a21C、a4D、a4解析:考虑特殊位置PQ⊥OP时,1||||2PFFQa,所以11224aaapq,故选C。例10、向高为H的水瓶中注水,注满为止,如果注水量V与水深h的函数关系的图象如右图所示,那么水瓶的形状是()解析:取2Hh,由图象可知,此时注水量V大于容器容积的12,故选B。(6)特殊方程例11、双曲线b2x2-a2y2=a2b2(ab0)的渐近线夹角为α,离心率为e,则cos2等于()A.eB.e2C.e1D.21e解析:本题是考查双曲线渐近线夹角与离心率的一个关系式,故可用特殊方程来考察。取双曲线方程为42x-12y=1,易得离心率e=25,cos2=52,故实用文档文案大全选C。(7)特殊模型例12、如果实数x,y满足等式(x-2)2+y2=3,那么xy的最大值是()A.21B.33C.23D.3解析:题中xy可写成00xy。联想数学模型:过两点的直线的斜率公式k=1212xxyy,可将问题看成圆(x-2)2+y2=3上的点与坐标原点O连线的斜率的最大值,即得D。3、图解法:就是利用函数图像或数学结果的几何意义,将数的问题(如解方程、解不等式、求最值,求取值范围等)与某些图形结合起来,利用直观几性,再辅以简单计算,确定正确答案的方法。这种解法贯穿数形结合思想,每年高考均有很多选择题(也有填空题、解答题)都可以用数形结合思想解决,既简捷又迅速。例13、已知α、β都是第二象限角,且cosαcosβ,则()A.αβB.sinαsinβC.tanαtanβD.cotαcotβ解析:在第二象限角内通过余弦函数线cosαcosβ找出α、β的终边位置关系,再作出判断,得B。例14、已知a、b均为单位向量,它们的夹角为60°,那么|a+3b|=()A.7B.10C.13D.4OABa3bba+3b实用文档文案大全解析:如图,a+3b=OB,在OAB中,||1,||3,120,OAABOAB由余弦定理得|a+3b|=|OB|=13,故选C。例15、已知{an}是等差数列,a1=-9,S3=S7,那么使其前n项和Sn最小的n是()A.4B.5C.6D.7解析:等差数列的前n项和Sn=2dn2+(a1-2d)n可表示为过原点的抛物线,又本题中a1=-90,S3=S7,可表示如图,由图可知,n=5273,是抛物线的对称轴,所以n=5是抛物线的对称轴,所以n=5时Sn最小,故选B。4、验证法:就是将选择支中给出的答案或其特殊值,代入题干逐一去验证是否满足题设条件,然后选择符合题设条件的选择支的一种方法。在运用验证法解题时,若能据题意确定代入顺序,则能较大提高解题速度。例16、方程lg3xx的解0x()A.(0,1)B.(1,2)C.(2,3)D.(3,+∞)解析:若(0,1)x,则lg0x,则lg1xx;若(1,2)x,则0lg1x,则1lg3xx;若(2,3)x,则0lg1x,则2lg4xx;若3,lg0xx,则lg3xx,故选C。将题目所提供的各选择支或特值逐一代入题干中进行验证,从而确定正确的答案.有时可通过初步分析,判断某个(或某几个)选项正确的可能性较大,再代入检验,可节省时间.◆例17:(2007年全国卷Ⅰ)下面给出的四个点中,到直线10xy的距离为22,357OnnSx+y–1<0x–y+1>0实用文档文案大全且位于表示的平面区域内的点是()A.(1,1)B.(1,1)C.(1,1)D.(1,1)解:将点(1,1)代入1xy中得1+1-1=1>0,排除A;将(-1,1)代入1xy得-1-1+1=-1<0,排除B;D中的点(1,-1)到直线10xy的距离为32≠22,故排除D.正确选项为C.例18:数列{}na满足11a,223a,且11112nnnaaa(n≥2),则na等于()A.21nB.123nC.23nD.22n解:先代入求得312a,再对照给出的选择支,分别验证11a,223a,312a即可得出结论,选A.5、筛选法(也叫排除法、淘汰法):就是充分运用选择题中单选题的特征,即有且只有一个正确选择支这一信息,从选择支入手,根据题设条件与各选择支的关系,通过分析、推理、计算、判断,对选择支进行筛选,将其中与题设相矛盾的干扰支逐一排除,从而获得正确结论的方法。使用筛选法的前提是“答案唯一”,即四个选项中有且只有一个答案正确。例19、若x为三角形中的最小内角,则函数y=sinx+cosx的值域是()A.(1,2]B.(0,23]C.[21,22]D.(21,22]解析:因x为三角形中的最小内角,故(0,]3x,由此可得y=sinx+cosx1,排除B,C,D,故应选A。6、分析法:就是对有关概念进行全面、正确、深刻的理解或对有关信息提取、分析和加工后而作出判断和选择的方法。实用文档文案大全(1)特征分析法——根据题目所提供的信息,如数值特征、结构特征、位置特征等,进行快速推理,迅速作出判断的方法,称为特征分析法。例20、如图,小圆圈表示网络的结点,结点之间的连线表示它们有网线相联,连线标的数字表示该段网线单位时间内可以通过的最大信息量,现从结点A向结点B传送信息,信息可以分开沿不同的路线同时传送,则单位时间内传递的最大信息量为()A.26B.24C.20D.19解析:题设中数字所标最大通信量是限制条件,每一支要以最小值来计算,否则无法同时传送,则总数为3+4+6+6=19,故选D。例21、设球的半径为R,P、Q是球面上北纬600圈上的两点,这两点在纬度圈上的劣弧的长是2R,则这两点的球面距离是()A、R3B、22RC、3RD、2R解析:因纬线弧长>球面距离>直线距离,排除A、B、D,故选C。例22、已知)2(524cos,53sinmmmm,则2tan等于()A、mm93B、|93|mmC、31D、5解析:由于受条件sin2θ+cos2θ=1的制约,故m为一确定的值,于是sinθ,cosθ的值应与m的值无关,进而推知tan2的值与m无关,又2θπ,422,∴tan21,故选D。(2)逻辑分析法——通过对四个选择支之间的逻辑关系的分析,达到否定实用文档文案大全谬误支,选出正确支的方法,称为逻辑分析法。例23、设a,b是满足ab0的实数,那么()A.|a+b||a-b|B.|a+b||a-b|C.|a-b||a|-|b|D.|a-b||a|+|b|解析:∵A,B是一对矛盾命题,故必有一真,从而排除错误支C,D。又由ab0,可令a=1,b=-1,代入知B为真,故选B。例24、ABC的三边,,abc满足等式coscoscosaAbBcC,则此三角形必是()A、以a为斜边的直角三角形B、以b为斜边的直角三角形C、等边三角形D、其它三角形解析:在题设条件中的等式是关于,aA与,bB的对称式,因此选项在A、B为等价命题都被淘汰,若选项C正确,则有111222
本文标题:高考数学选择题技巧
链接地址:https://www.777doc.com/doc-4704823 .html