您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 几何体的外接球的体积和表面积
多面体外接球的半径的求法多面体外接球的半径的求法•方法一:直接法•方法二:构造直角三角形•方法三:补形一、直接法OAO1BA1AC1CO2010年文(7)设长方体的长、宽、高分别为2a、a、a,其顶点都在一个球面上,则该球的表面积为(A)3a2(B)6a2(C)12a2(D)24a2直接法的使用技巧2222abclabcR设长方体的长、宽、高分别为、、,则a,23Ra设正方体的边长为则有2010年理设三棱柱的侧棱垂直于底面,所有棱的长都为a,顶点都在一个球面上,则该球的表面积为二、构造直角三角形2211OBOOOB构造直角三角形使用技巧ROCB22,r,2llRr设柱体的高为底面外接圆的半径为则有任意直棱柱的外接球圆柱的外接球构造直角三角形使用技巧AOO1AOO1圆锥的外接球22,r,hRrhR设椎体的高为底面外接圆的半径为则有正棱椎的外接球构造直角三角形使用技巧22,r,hRrhR设椎体的高为底面外接圆的半径为则有球心在几何体外部ACBPO a例3:若三棱锥的三条侧棱两两垂直,且侧棱长均为,则其外接球的表面积是_____三、补形法,a DAABCABBCDAABBCOABCDO变式:已知球的面上四点、、、,则球的体积等于平面,,三、补形法226.4Ra将正四面体放到正方体中,得正方体的棱长为a,且正四面体的外接球即正方体的外接球,所以= - aPABC例4:求棱长为的正四面体的外接球的表面积。三、补形法222222222123322bbcabcR将正四面体放到长方体中,边长为a,b,c,则有:aca ABCDAB=CD=2AC=BD=3AD=BC=1变式:四面体,,,,求其外接球体积三、补形法三、补形法 5P-ABCABCPA=8PB=PC=73AB=3例:已知三棱锥中,三角形为等边三角形,且,,,则其外接球的体积为补形法的使用技巧根据题中给出的线面位置关系,将其放到特殊的几何体中,转化为直接法或构造直角三角形法。直接法的使用技巧Rcbalcba2222,则、、分别为设长方体的长、宽、高a,23Ra设正方体的边长为则有构造直角三角形使用技巧ROCB22,r,2llRr设柱体的高为底面外接圆的半径为则有任意直棱柱的外接球圆柱的外接球构造直角三角形使用技巧AOO1AOO1椎体的外接球22,r,hRrhR设椎体的高为底面外接圆的半径为则有课后作业1.(球内接正四面体问题)一个四面体的所有棱长都为2,四个顶点在同一球面上,则此球的表面积为2.(球内接长方体问题)一个长方体的各顶点均在同一球的球面上,且一个顶点上的三条棱的长分别为1,2,3,则此球的表面积为。3.设,,,PABC是球O面上的四点,且,,PAPBPC两两互相垂直,若PAPBPCa,则球心O到截面ABC的距离是.4.(球内接正三棱锥问题)在正三棱锥SABC中,侧棱SCSAB侧面,侧棱2SC,则此正三棱锥的外接球的表面积为5.(球内接棱柱问题)若一个底面边长为32,棱长为6的正六棱柱的所有顶点都在一个平面上,则此球的体积为.
本文标题:几何体的外接球的体积和表面积
链接地址:https://www.777doc.com/doc-4706538 .html