您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 习题/试题 > 高分子材料试题及答案
《高分子材料》试卷答案及评分标准一、填空题(20分,每空1分):1、材料按所起作用分类,可分为功能材料和结构材料两种类型。2、按照聚合物和单体元素组成和结构变化,可将聚合反应分成加成聚合反应和缩合聚合反应两大类。3、大分子链形态有伸直链、折叠链、螺旋链、无规线团四种基本类型。4、合成胶粘剂按固化类型可分为化学反应型胶粘剂、热塑性树脂溶液胶粘剂、热熔胶粘剂三种。5、原子之间或分子之间的系结力称为结合键或价键。6、高分子聚合物溶剂选择的原则有极性相近、溶解度参数相近、溶剂化原则。7、液晶高分子材料从应用的角度分为热致型和溶致型两种。8、制备高聚物/粘土纳米复合材料方法有插层聚合和插层复合两种。二、解释下列概念(20分,每小题4分):1、材料化过程:由化学物质或原料转变成适于一定用场的材料,其转变过程称为材料化过程或称为材料工艺过程。2、复合材料:由两种或两种以上物理和化学性质不同的物质,用适当的工艺方法组合起来,而得到的具有复合效应的多相固体材料称之为复合材料。3、聚合物混合物界面:聚合物的共混物中存在三种区域结构:两种聚合物各自独立的相和两相之间的界面层,界面层也称为过渡区,在此区域发生两相的粘合和两种聚合物链段之间的相互扩散。4、共混法则:共混物的性能与构成共混物的组成均质材料的性能有关,一般为其体积分数或摩尔分数与均质材料的性能乘积之和。或是倒数关系。5、纳米复合材料:是指复合材料结构中至少有一个相在一维方向上是纳米尺寸。所谓纳米尺寸是指1nm~100nm的尺寸范围。纳米复合材料包括均质材料在加工过程中所析出纳米级尺寸增强相和基体相所构成的原位复合材料、纳米级尺寸增强剂的复合材料以及刚性分子增强的分子复合材料等。三、比较下列各组聚合物的柔顺性大小,并说明理由(5分,每小题2.5分):1、聚丙烯与聚苯烯聚丙烯聚苯烯,原因:随着长链上侧基体积的增大,限制了分子链的运动,分子的柔性降低。2、聚乙烯、氯化聚乙烯和聚氯乙烯聚乙烯氯化聚乙烯聚氯乙烯,原因:随着长链上氯原子的增加,分子间作用力增强,分子的柔性降低。四、比较下列各组聚合物的Tg大小,并说明理由(5分,每小题2.5分):1、聚丙烯、聚氯乙烯、聚乙烯醇和聚丙烯腈聚丙烯聚氯乙烯聚乙烯醇聚丙烯腈,原因:随着分子链上侧基的极性增强,分子链产生的内旋转受到限制越大,是其Tg增高。2、聚(3、3-二甲基—1-丁烯)、聚苯乙烯和聚乙烯基咔唑聚(3、3-二甲基—1-丁烯)聚苯乙烯聚乙烯基咔唑,原因:随着分子链上侧基体积的增大,分子运动越困难,所以Tg增高。五、按照给出条件鉴别高分子材料(6分,每小题3分):1、序号密度(g/cm3)洛氏硬度软化温度℃冲击强度J/m10.95R351222720.92R211104330.94R3813382请指出1、2、3分别是HDPE、LDPE、UHMWPE中的哪一种聚合物?答案:1、2、3分别是HDPE、LDPE、UHMWPE。2、序号拉伸强度断裂伸长率弯曲模量冲击强度J/m156902.20640215987.65105请指出1、2分别是PC、HIPS中的哪一种聚合物?答案:1、2分别是PC、HIPS。六、写出制备下列高分子材料的单体名称及反应式(8分,每小题2分):1、锦纶6T答案:单体是对苯二甲酸和己二胺(1分)反应式:(1分)2、PIP答案:单体是异戊二烯(1分)反应式:(1分)3、芳纶1313答案:单体是间苯二甲酸和间苯二胺(1分)反应式:(1分)4、ABS答案:单体是丙烯腈、苯苯乙烯和丁二烯(1分)反应式:(1分)七、回答下列问题(36分,每小题6分):1、高分子材料与小分子化合物相比具有什么特点?答案:高分子是一种许许多多原子由共价键联结,且链上的成键原子都共享成键电子的相对分子质量很大(104~107,甚至更大)的化合物。如果把一般的小分子化合物看作为“点”分子,则高分子恰似“一条链”。正是由于高分子的长链结构,使其与小分子物质相比具有种种高分子的特性,归纳如下:1)高分子是由很大数目的结构单元组成,每一结构单元相当于一个小分子,它可以是一种均聚物,也可以是几种共聚物。结构单元以共价键相连结,形成线性分子、支化分子、网状分子等等。2)一般高分子的主链都有一定的内旋转自由度,可以使主链弯曲而具有柔性。并由于分子的热运动,柔性链的形状可以不断改变,如化学键不能作内旋转,或结构单元间有强烈的相互作用,则形成刚性链,而且有一定的形状。3)高分子是由很多结构单元所组成,与小分子相比,其分子间的范德华力超过了组成大分子的化学键能,不易汽化,或用蒸馏法进行纯化。4)只要高分子链中存在交联,既是交联度很小,高聚物的物理力学性能也会发生很大变化,最主要的是不溶解和不熔融。5)高聚物的聚集态有晶态和非晶态之分,高聚物的晶态比小分子晶态的有序差很多,存在很多缺陷。但高聚物的非晶态却比小分子液态的有序程度高。6)要将高聚物加工成为有用的材料,往往要在树脂中加入填料、各种助剂、色料等。当两种以上高聚物共混改性时,高分子材料的织态结构是决定材料的性能的重要因素。2、PC性能有哪些优缺点?答案:PC的优良性能:(1)力学性能PC具有均衡的刚性和韧性,拉伸强度高达61~70MPa,有突出的冲击强度,在一般工程塑料中居首位,抗蠕变性能优于聚酰胺和聚甲醛。(2)热性能与聚酰胺和聚甲醛不同,PC是非结晶性塑料,但由于主链中存在苯环,使PC具有较高的耐热性,它的玻璃化转变温度和软化温度分别高达150℃和240℃,最高使用温度可达135℃。PC具有优良的耐寒性,脆化温度为-100℃,因此可在-100~130℃的范围内使用。(3)透明性PC的透光率为87%~91%,由于它兼具抗冲击性和耐热性,因此综合性能优于聚苯乙烯、有机玻璃等其它透明塑料。(4)其它性能吸水率低、成型收缩率小、尺寸精度高,并在广泛的温度范围内具有良好的电性能。还具有优良的耐化学腐蚀性以及自熄、易增强、阻燃、元毒、易着色等优点。PC的主要缺点:熔体粘度大,流动性差,使成型制件的残余应力大,容易产生应力开裂;耐溶剂、耐碱性差;高温时易水解;摩擦因数大、无自润滑性、不耐磨损、耐疲劳性差。3、用银纹—剪切带—空穴理论解释PS中加入丁苯橡胶后冲击强度提高的现象。答案:银纹-剪切带-空穴理论认为,橡胶颗粒的主要增韧机理包括三个方面:①引发和支化大量银纹并桥接裂纹两岸;②引发基体剪切形变,形成剪切带;③在橡胶颗粒内及表面产生空穴,伴之以空间之间聚合物链的伸展和剪切并导致基体的塑性变形。在PS中加入了丁苯橡胶后,橡胶颗粒充作应力集中中心(假定橡胶相与基体有良好的粘合),诱发大量银纹,而且还能支化银纹,另外能够对银纹进行桥接。橡胶颗粒的另一个重要作用是引发剪切带的形成,剪切带可使基体剪切屈服,吸收大量形变功。此外剪切带不仅是消耗能量的重要因素,而且还终止银纹使其不致发展成破坏性的裂纹。此外,剪切带也可使已存在的小裂纹转向或终止。(1分)在冲击应力作用下,橡胶颗粒发生空穴化作用,这种空穴化作用将裂纹或银纹尖端区基体中的三轴应力转变成平面剪切应力,从而引发剪切带。剪切屈服吸收大量能量,从而大幅度提高抗冲击强度。综上所述,PS中加入丁苯橡胶后冲击强度提高。4、聚合物共混改性的优点有哪些?答案:聚合物共混是获得综合性能优异的高分子材料的卓有成效的途径,共混已成为高分子材料改性的极重要的手段,其主要优点体现在以下几个方面。1)综合均衡各聚合物组分的性能,取长补短,消除各单一聚合物组分性能上的弱点,获得综合性能优异的高分子材料。2)使用少量的某一聚合物可以作为另一聚合物的改性剂,改性效果显著。3)通过共混可改善某些聚合物的加工性能。4)聚合物共混可满足某些特殊性能的需要,制备一系列具有崭新性能的高分子材料。5、力降解可导致聚合物哪些性能的变化?答案:聚合物在塑炼、破碎、挤出、磨碎、抛光、一次或多次变形以及聚合物溶液的强力搅拌中,由于受到机械力的作用,大分子链断裂、分子量下降的力化学现象称为力降解。力降解的结果使聚合物性能发生显著变化:①聚合物分子量下降,分子量分布变窄②产生新的端基及极性基团,力降解后大分子的端基常发生变化。非极性聚合物中可能生成极性基团,碱性端基可能变成酸性,饱和聚合物中生成双键等。③溶解度发生改变例如高分子明胶仅在40℃以上溶于水,而力降解后能完全溶于冷水。溶解度的变化是分子量下降、端基变化及主链结构改变所致。④可塑性改变例如橡胶经过塑炼可改善与各种配合剂的混炼性以便于成型加工。这是分子量下降引起的。其它,如大分子构型、力学强度、物理、化学性质都可能改变。另外,某些聚合物如PMMA,在一定条件下还会降解产生单体和齐聚物。⑤力结构化和化学流动某些带有双键、-次甲基等的线型聚合物在机械力作用下会形成交联网络,称为力结构化作用。根据条件的不同,可能发生交联或者力降解和力交联同时进行。例如聚氯乙烯在180℃塑炼时,同时发生力化学降解和结构化。6、解释聚四氟乙烯称为“塑料王”的原因?聚四氟乙烯分子结构具有以下特点:1、碳-氟键是键能很高的一种键,因此,碳-氟键的断裂需要很高的能量。从加热提供热能角度看,即使加热至500℃也不会断裂;2、氟原子半径为0.68Å,比氢原子(半径0.28Å)大得多。碳-碳键的键长约1.31Å,由此可知,氟原子正好很严密地把碳包围在其中,使碳链难以遭受其它元素的攻击;3、氟原子的电负性很大,氟原子间有很大的排斥力。因而,氟-碳键不能像氢-碳键那样容易自由旋转。整个分子比较僵硬,加上对称性好,所以易于结晶;4、PTFE分子是对称排列,分子没有极性,大分子间及与其它物质分子间吸引力都很小,使其摩擦因数很小。上述分子结构使PTFE是性能很优异的一种材料。外表呈透明或不透明的蜡状不亲水粉料,密度为2.14~2.20g/cm3,在塑料中密度最大。结晶呈六方晶形(19℃以上)或三斜晶形(19℃以下),熔点为320~345℃。其突出的性能优点表现在四个方面:1、优良的耐高低温性,PTFE的使用温度在-200~260℃之间,短期甚至可达300℃,大大高于其他塑料;2、优异的耐化学腐蚀和老化性能,除金属钠、氟元素及其化合物对它有侵蚀作用外,其它诸如强酸、强碱、油脂、有机溶剂等对它均无作用。它没有溶剂,即使在王水、纯氧化剂、浓NaOH及原子工业中的强腐蚀五氟化铀中都不会被腐蚀,化学稳定性超过了玻璃、陶瓷、不锈钢和金属。甚至比金、铂还稳定。因此有“塑料王”之称。在光线和大气中老化20~30年仍无任何变化;3、摩擦因数低,低粘附性。PTFE的动、静摩擦因数相等,对钢为0.04,自身为0.01-0.02,是摩擦因数最小的塑料。由于它的表面自由能很低,几乎所有材料均无法和它粘附.它的表面可永保光洁、干净。当然,无法和其它材料粘合也是很大的缺点。乙醚和石油醚等表面张力小的溶剂可润湿其表面;4、优异的介电性能,其介电性能不随频率和温度的变化而变化。0.025mm的薄膜可耐500V的高压。PTFE具有较高的冲击强度,但是拉伸强度、耐磨耗和耐蠕变性能低于其它工程塑料,有时可加入玻璃纤维、青铜、碳和石墨,以提高比力学强度。因此PTFE称为“塑料王”。
本文标题:高分子材料试题及答案
链接地址:https://www.777doc.com/doc-4713301 .html