您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2018年中考数学复习题-答案很详细
试卷第1页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:________班级:________考号:________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………2018年04月03日中考复习数学卷试卷副标题考试范围:xxx;考试时间:100分钟;命题人:xxx题号一总分得分注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第Ⅰ卷(选择题)请点击修改第I卷的文字说明评卷人得分一.选择题(共25小题)1.四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.14SB.13SC.12SD.11S2.如图,△ABC中,∠BAC=90°,AD⊥BC于点D,若AD=,BC=2,△ABC的周长为()试卷第2页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A.6+2B.10C.8+2D.123.如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC能作出()A.2个B.3个C.4个D.6个4.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下落了()米.A.0.5B.1C.1.5D.25.若直角三角形的两条直角边长为a,b,斜边长为c,斜边上的高为h,则有()A.ab=h2B.C.D.a2+b2=2h26.如图,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用X、Y表示直角三角形的两直角边(X>Y),请观察图案,指出以下关系式中不正确的是()A.X2+Y2=49B.X﹣Y=2C.2XY+4=49D.X+Y=137.如图,△ABC中,有一点P在AC上移动.若AB=AC=5,BC=6,则AP+BP+CP的最小值为()试卷第3页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:________班级:________考号:________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………A.8B.8.8C.9.8D.108.如图,在△ABC中AD⊥BC,CE⊥AB,垂足分别为D、E,AD、CE交于点H,已知EH=EB=3,AE=4,则BC+AC的长是()A.7B.8C.D.9.如图,半圆的直径CB=4,动点P从圆心A出发到B,再沿半圆周从B到C,然后从C回到A,按1单位/秒的速度运动.设运动时间为t(秒),PA的长为y(单位),y关于t的函数图象大致是()A.B.C.D.10.设关于x的方程ax2+(a+2)x+9a=0,有两个不相等的实数根x1、x2,且x1<1<x2,那么实数a的取值范围是()A.B.C.D.11.x1,x2是方程x2+x+k=0的两个实根,若恰x12+x1x2+x22=2k2成立,k的值为()A.﹣1B.或﹣1C.D.﹣或112.已知关于x的方程:(1)ax2+bx+c=0;(2)x2﹣4x=8+x2;(3)1+(x﹣1)试卷第4页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………(x+1)=0;(4)(k2+1)x2+kx+1=0中,一元二次方程的个数为()个.A.1B.2C.3D.413.如果关于x的方程x2﹣ax+a2﹣3=0至少有一个正根,则实数a的取值范围是()A.﹣2<a<2B.C.D.14.如图,将边长为2cm的正方形ABCD沿其对角线AC剪开,再把△ABC沿着AD方向平移,得到△A′B′C′,若两个三角形重叠部分的面积为1cm2,则它移动的距离AA′等于()A.0.5cmB.1cmC.1.5cmD.2cm15.如图,若将左图正方形剪成四块,恰能拼成右图的矩形,设a=1,则这个正方形的面积为()A.B.C.D.(1+)216.已知a+,则的值为()A.﹣1B.1C.2D.不能确定17.若ab≠1,且有5a2+2002a+9=0及9b2+2002b+5=0,则的值是()A.B.C.﹣D.﹣18.已知抛物线y=ax2+bx+c满足条件:(1)在x>﹣2时,y随x的增大而增大,在x<﹣2时,y随x的增大而减小;(2)与x轴有两个交点,且两个交点间的距离小于2.以下四个结论:①a<0;②c>0;③a﹣b>0;④<a试卷第5页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………学校:___________姓名:________班级:________考号:________…………○…………内…………○…………装…………○…………订…………○…………线…………○…………<,说法正确的个数有()个.A.4B.3C.2D.119.二次函数y=ax2+bx+c(a≠0)的图象如图,下列四个结论:①4a+c<0;②m(am+b)+b>a(m≠﹣1);③关于x的一元二次方程ax2+(b﹣1)x+c=0没有实数根;④ak4+bk2<a(k2+1)2+b(k2+1)(k为常数).其中正确结论的个数是()A.4个B.3个C.2个D.1个20.抛物线y=ax2+bx+c交x轴于A、B两点,交y轴于C点,其中﹣2<h<﹣1,﹣1<xB<0,下列结论①abc<0;②(4a﹣b)(2a+b)<0;③4a﹣c<0;④若OC=OB,则(a+1)(c+1)>0,正确的为()A.①②③④B.①②④C.①③④D.①②③21.如图,正方形ABCD的边AB=1,和都是以1为半径的圆弧,则无阴影两部分的面积之差是()A.B.1﹣C.﹣1D.1﹣22.如图是武汉某座天桥的设计图,设计数据如图所示,桥拱是圆弧形,则试卷第6页,总6页…………○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………内…………○…………装…………○…………订…………○…………线…………○…………桥拱的半径为()A.13mB.15mC.20mD.26m23.如图,AB为半圆O的直径,C是半圆上一点,且∠COA=60°,设扇形AOC、△COB、弓形BmC的面积为S1、S2、S3,则它们之间的关系是()A.S1<S2<S3B.S2<S1<S3C.S1<S3<S2D.S3<S2<S124.如图,正方形ABCD内接于⊙O,点P在劣弧AB上,连接DP,交AC于点Q.若QP=QO,则的值为()A.B.C.D.25.已知等边三角形的内切圆半径,外接圆半径和高的比是()A.1:2:B.2:3:4C.1::2D.1:2:3本卷请仔细校对后使用,答案仅供参考。12018年04月03日初中数学组卷参考答案与试题解析一.选择题(共25小题)1.四个全等的直角三角形按图示方式围成正方形ABCD,过各较长直角边的中点作垂线,围成面积为S的小正方形EFGH.已知AM为Rt△ABM较长直角边,AM=2EF,则正方形ABCD的面积为()A.14SB.13SC.12SD.11S【分析】设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2,由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,由此即可解决问题.【解答】解:设AM=2a.BM=b.则正方形ABCD的面积=4a2+b2由题意可知EF=(2a﹣b)﹣2(a﹣b)=2a﹣b﹣2a+2b=b,∵AM=2EF,∴2a=2b,∴a=b,∵正方形EFGH的面积为S,∴b2=S,∴正方形ABCD的面积=4a2+b2=13b2=13S,故选:B.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。2【点评】本题考查正方形的性质、勾股定理、线段的垂直平分线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考选择题中的压轴题.2.如图,△ABC中,∠BAC=90°,AD⊥BC于点D,若AD=,BC=2,△ABC的周长为()A.6+2B.10C.8+2D.12【分析】首先根据AB2=BD•BC,AC2=DC•BC,AD2=BD•DC,分别求出BD、CD、AB、AC的长度各是多少;然后根据三角形的周长的求法,求出△ABC的周长为多少即可.【解答】解:∵AD=,BC=2,∴BD+CD=2,BD•CD=AD2=,解得,BD=,CD=,∵AB2=BD•BC=•2=4,∴AB=2,同理,可得:AC=4,则△ABC的周长为:2+4+2=6+2.故选:A.【点评】此题主要考查了勾股定理的应用,以及三角形的周长的含义和求法,要熟练掌握.3.如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC能作出()本卷请仔细校对后使用,答案仅供参考。3A.2个B.3个C.4个D.6个【分析】可以分A、B、C分别是直角顶点三种情况进行讨论即可解决.【解答】解:当AB是斜边时,则第三个顶点所在的位置有:C、D,E,H四个;当AB是直角边,A是直角顶点时,第三个顶点是F点;当AB是直角边,B是直角顶点时,第三个顶点是G.因而共有6个满足条件的顶点.故选:D.【点评】正确进行讨论,把每种情况考虑全,是解决本题的关键.4.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下落了()米.A.0.5B.1C.1.5D.2【分析】在直角三角形ABC中,根据勾股定理,得:AC=2米,由于梯子的长度不变,在直角三角形CDE中,根据勾股定理,得CE=1.5米,所以AE=0.5米,即梯子的顶端下滑了0.5米.【解答】解:在Rt△ABC中,AB=2.5米,BC=1.5米,故AC===2米,在Rt△ECD中,AB=DE=2.5米,CD=(1.5+0.5)米,故EC===1.5米,故AE=AC﹣CE=2﹣1.5=0.5米.故选:A.本卷由系统自动生成,请仔细校对后使用,答案仅供参考。4【点评】此题中主要注意梯子的长度不变,分别运用勾股定理求得AC和CE的长,即可计算下滑的长度.5.若直角三角形的两条直角边长为a,b,斜边长为c,斜边上的高为h,则有()A.ab=h2B.C.D.a2+b2=2h2【分析】根据三角形的面积求法,可将斜边的高h用两直角边表示出来.【解答】解:∵ab=ch∴h=∴=∴===.故选C.【点评】本题主要考查勾股定理和直角三角形的面积求法.6.如图,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用X、Y表示直角三角形的两直角边(X>Y),请观察图案,指出以下关系式中不正确的是()A.X2+Y2=49B.X﹣Y=2C.2XY+4=49D.X+Y=13【分析】利用勾股定理和正方形的面积公式解答即可.【解答】解:A中,根据勾股定理以及正方形的面积公式即可得到,正确;B中,根据小正方形的边长是2即可得到,正确;C中,根据四个直角三角形的面积和加上小正方形的面积即可得到,正确;D中,根据A,C联立结合完全平方公式可以求得x+y=,错误.故选:D.【点评】根据各部分图
本文标题:2018年中考数学复习题-答案很详细
链接地址:https://www.777doc.com/doc-4724271 .html