您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 第5章-检测系统设计(机电一体化系统设计-冯浩)
第5章检测系统设计检测系统是机电一体化系统的检测部分,所检测到的信号传递给控制器,作为控制器的决策依据之一。设计一个准确和快速的检测系统以满足机电一体化系统的需要时十分必要的。1.模拟信号检测系统振荡器用于对传感器信号进行调制,并为解调提供参考信号;量程变换电路的作用是避免放大器饱和并满足不同测量范围的需要;解调器用于将已调制信号恢复成原有形式;5.1概述一、检测系统的组成显示执行机构模/数转换器量程变换电路传感器振荡器放大器运算电路解调器滤波器计算机`滤波器可将无用的干扰信号滤除,并取出代表被测物理量的有效信号;运算电路可对信号进行各种处理,以正确获得所需的物理量,其功能也可在对信号进行模/数转换后,由数字计算机来实现;计算机对信号进行进一步处理后,可获得相应的信号去控制执行机构,而在不需要执行机构的检测系统中,计算机则将有关信息送去显示或打印输出。显示执行机构模/数转换器量程变换电路传感器振荡器放大器运算电路解调器滤波器计算机`2.数字信号检测系统数字信号检测系统有绝对码数字式和增量码数字式。当传感器输出的编码与被测量一一对应,称为绝对码。绝对码检测系统如右图所示,每一一、检测系统的组成放大整形光电转换传感器纠错电路码制变换显示执行机构译码器`经光电转换和放大整形后,得到与被测量相对应的编码。纠错电路纠正由于各个码道刻划误差而可能造成的粗大误差。采用循环码(格雷码)传感器时则先转换为二进制码,再译码输出。码道的状态由相应光电元件读出,当传感器输出增量码信号,即信号变化的周期数与被测量成正比,其增量码数字信号检测系统的典型组成如右图所示。传感器脉冲当量变换电路放大器细分电路整形电路寄存器计数器计算机`显示执行辨向电路传感器的输出多数为正弦波信号,需先经放大、整形后变成数字脉冲信号。但在多数情况下,为提高分辨率,常采用细分电路使传感器信号每变化1/n个周期计一个数,其中n称为细分数。辨向电路用于辨别被测量的变化方向。当脉冲信号所对应的被测量不便读出和处理时,需进行脉冲当量变换。计算机可对信号进行复杂的运算处理,并将结果直接送去显示或打印输出,或求取控制量去控制执行机构。1.模拟量的转换输入方式(4种)二、模拟量的转换输入传感器传感器传感器采样/保持采样/保持多路模拟开关控制器A/D缓冲器总线A/D总线传感器多路模拟开关总线放大采样/保持控制器A/D采样/保持A/D采样/保持A/D采样/保持A/D总线传感器输入并行输入口a)b)c)d)..................三态缓冲器2.多路模拟开关多路模拟开关又称为多路转换开关,简称多路开关,其作用是分别或依次把各路检测信号与A/D转换器接通,以节省A/D转换器件。开关地址输入端开关控制与驱动电路选通信号5模拟输入通道7862431S0S4S6S7S5S1S2S3A/D转换器.......右图表示一个8通道的模拟开关的结构图,它由模拟开关S0~S7及开关控制与驱动电路组成。8个模拟开关的接通与断开,通过用二进制代码寻址来指定,从而选择特定的通道。AD7501A2译码驱动电平转换电路(-15V)(+15V)OUTS1地VSSVDDS2321GNDVSS15A1A016ENVDDS114ENA1A2A08765411S8S7OUT1213S2S6S510S3S49上图是AD7501型多路模拟开关集成芯片的管脚功能图,这是具有8路输入通道、1路公共输出的多路开关CMOS集成芯片。由三个地址线(A0、A1、A2)的状态及EN端来选择8个通道之中的一路,片上所有的逻辑输入端与TTL/DTL及CMOS电路兼容。其真值表如下:A2A1A0EN“ON”0001100112010130111410015101161101711118×××0无3.信号采集与保持所谓采集,就是把时间连续的信号变成一串不连续的脉冲时间序列的过程。信号采样是通过采样开关来实现。采样开关又称采样器,实质上它是一个模拟开关,每隔时间间隔T闭合一次,每次闭合持续时间τ,其中,T称为采样周期,其倒数fs=1/T称为采样频率,τ称为采样时间或采样宽度,采样后的脉冲序列称为采样信号。采样信号是一个离散的模拟信号,它在时间轴上是离散的,但在函数轴上仍是连续的,因而还需要用A/D转换器将其转换成数字量。A/D转换过程需要一定时间,为防止产生误差,要求在此期间内保持采样信号不变。实现这一功能的电路称采样/保持电路。VFUcuiN1CN20u典型的采样/保持电路由模拟开关、保持电容和运算放大器组成,如右图所示。5.2机电一体化系统化常用传感器一、光栅位移传感器二、感应同步器三、磁栅位移传感器一、光栅位移传感器32411.标尺光栅2.指示光栅3.光电元件4.光源1、光栅的构造:2、工作原理一、光栅位移传感器ddffddBffddW/2WθddW/2指示光栅标尺光栅把两块栅距W相等的光栅平行安装,且让它们的刻痕之间有较小的夹角θ时,这时光栅上会出现若干条明暗相间的条纹,这种条纹称莫尔条纹,它们沿着与光栅条纹几乎垂直的方向排列,如图所示。光栅密度可达250条/mm。莫尔条纹具有如下特点:1.莫尔条纹的位移与光栅的移动成比例。光栅每移动过一个栅距W,莫尔条纹就移动过一个条纹间距B2.莫尔条纹具有位移放大作用。莫尔条纹的间距B与两光栅条纹夹角之间关系为3.莫尔条纹具有平均光栅误差的作用。一、光栅位移传感器WWB2sin2通过光电元件,可将莫尔条纹移动时光强的变化转换为近似正弦变化的电信号,如图所示。一、光栅位移传感器U0UW/2oUm2W3W/2WxWxUUUm2sin0其电压为:将此电压信号放大、整形变换为方波,经微分转换为脉冲信号,再经辨向电路和可逆计数器计数,则可用数字形式显示出位移量,位移量等于脉冲与栅距乘积。测量分辨率等于栅距。一、光栅位移传感器1.感应同步器结构二、感应同步器sincos节距2τ(2mm)节距τ(0.5mm)4l绝缘粘胶铜箔铝箔耐切削液涂层基板(钢、铜)滑尺定尺包括定尺和滑尺,用制造印刷线路板的腐蚀方法在定尺和滑尺上制成节距T(一般为2mm)的方齿形线圈。定尺绕组是连续的,滑尺上分布着两个励磁绕组,分别称为正弦绕组和余弦绕组。当正弦绕组与定尺绕组相位相同时,余弦绕组与定尺绕组错开1/4节距。滑尺和定尺相对平行安装,其间保持一定间隙(0.05~0.2mm)。二、感应同步器2.感应同步器的工作原理在滑尺的绕组中,施加频率为f(一般为2~10kHz)的交变电流时,定尺绕组感应出频率为f的感应电动势。感应电动势的大小与滑尺和定尺的相对位置有关。设正弦绕组供电电压为Us,余弦绕组供电电压为Uc,移动距离为x,节距为T,则正弦绕组单独供电时,在定尺上感应电势为二、感应同步器cos360cos2ssKUTxKUUo'余弦绕组单独供电所产生的感应电势为二、感应同步器sin360sin2ccKUTxKUUo由于感应同步器的磁路系统可视为线性,可进行线性叠加,所以定尺上总的感应电势为sincos222csKUKUUUU'式中:K——定尺与滑尺之间的耦合系数;——定尺与滑尺相对位移的角度表示量(电角度)T——节距,表示直线感应同步器的周期,标准式直线感应同步器的节距为2mm。利用感应电压的变化可以求得位移X,从而进行位置检测。二、感应同步器TxTx2360)(o3.测量方法根据对滑尺绕组供电方式的不同,以及对输出电压检测方式的不同,感应同步器的测量方式有鉴相式和鉴幅式两种工作法。二、感应同步器(1)鉴相式工作法滑尺的两个励磁绕组分别施加相同频率和相同幅值,但相位相差90o的两个电压,设二、感应同步器tmsUUsintUUmccos2'22UUU)sin(sincoscossintKUtKUtKUmmm则从上式可以看出,只要测得相角,就可以知道滑尺的相对位移x:Txo360二、感应同步器2.鉴幅工作法在滑尺的两个励磁绕组上分别施加相同频率和相同相位,但幅值不等的两个交流电压:tmUUssinsintmUUcsincostKUUUUmsin)sin(222'则:由上式知,感应电势的幅值随着滑尺的移动作正弦变化。因此,可以通过测量感应电动势的幅值来测得定尺和滑尺之间的相对位移。1.磁栅式位移传感器的结构三、磁栅位移传感器输出信号励磁电源654SS3NNSSSλ7NN1SNN200abx1—磁性膜2—基体3—磁尺4—磁头5—铁芯6—励磁绕组7—拾磁绕组2.原理:在用软磁材料制成的铁芯上绕有两个绕组,一个为励磁绕组,另一个为拾磁绕组,将高频励磁电流通入励磁绕组时,当磁头靠近磁尺时在拾磁线圈中感应电压为:三、磁栅位移传感器txUUsin2sin0U0——输出电压系数;——磁尺上磁化信号的节距;χ——磁头相对磁尺的位移;ω——励磁电压的角频率。式中:在实际应用中,需要采用双磁头结构来辨别移动的方向3.测量方式(1)鉴幅测量方式如前所述,磁头有两组信号输出,将高频载波滤掉后则得到相位差为π/2的两组信号两组磁头相对于磁尺每移动一个节距发出一个正(余)弦信号,经信号处理后可进行位置检测。这种方法的检测线路比较简单,但分辨率受到录磁节距λ的限制,若要提高分辨率就必须采用较复杂的信频电路,所以不常采用。三、磁栅位移传感器xUU2sin01xUU2cos022.鉴相测量方式将一组磁头的励磁信号移相90°,则得到输出电压为在求和电路中相加,则得到磁头总输出电压为三、磁栅位移传感器txUUcos2sin01txUUsin2cos02txUU2sin0则合成输出电压U的幅值恒定,而相位随磁头与磁尺的相对位置χ变化而变。读出输出信号的相位,就可确定磁头的位置。5.4数字信号的检测在工程测试中,数字信号处理方法得到广泛的应用,已成为测试系统中的重要部分。数字式传感器通过接口与计算机连接,讲数字信号直接送给计算机进行处理。但传感器获取的测试信号中大多数不能直接被计算机接受,需要进行预处理。常用的信号处理电路有脉冲信号处理电路、开关量信号处理电路等。5.4.1单脉冲信号1.增量式编码器结构5.4.2光电编码器2.增量式编码器工作原理鉴向盘与主码盘平行,并刻有a、b两组透明检测窄缝,它们彼此错开1/4节距,以使A、B两个光电变换器的输出信号在相位上相差90°。工作时,鉴向盘静止不动,主码盘与转轴一起转动,光源发出的光投射到主码盘与鉴向盘上。当主码盘上的不透明区正好与鉴向盘上的透明窄缝对齐时,光线被全部遮住,光电变换器输出电压为最小;当主码盘上的透明区正好与鉴向盘上的透明窄缝对齐时,光线全部通过,光电变换器输出电压为最大。主码盘每转过一个刻线周期,光电变换器将输出一个近似的正弦波电压,且光电变换器A、B的输出电压相位差为90°。经逻辑电路处理就可以测出被测轴的相对转角和转动方向。3.绝对式编码器原理绝对式编码器是把被测转角通过读取码盘上的图案信息直接转换成相应代码的检测元件。编码盘有光电式、接触式和电磁式三种。光电式码盘是目前应用较多的一种,它是在透明材料的圆盘上精确地印制上二进制编码。如图所示为四位二进制的码盘,码盘上各圈圆环分别代表一位二进制的数字码道,在同一个码道上印制黑白等间隔图案,形成一套编码黑色不透光区和白色透光区分别代表二进制的“0”和“1”。在一个四位光电码盘上,有四圈数字码道,每一个码道表示二进制的一位,里侧是高位,外侧是低位,在360°范围内可编数码数为24=16个。1100001101010110011101001010100110001011111100010010000011101101工作时,码盘的一侧放置电源,另一边放置光电接受装置,每个码道都对应有一个光电管及放大、整形电路。码盘转到不同位置,光电元件接受光信号,并转成相应的电信号,经放大整
本文标题:第5章-检测系统设计(机电一体化系统设计-冯浩)
链接地址:https://www.777doc.com/doc-4742212 .html