您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 20.2数据的波动程度(一)课件
人教版八年级(下册)20.2数据的波动程度(一)海丰县黄羌中学施培存第二十章数据的分析现要从甲,乙两名射击选手中挑选一名射击选手参加比赛.若你是教练,你认为挑选哪一位比较合适?教练的烦恼第一次第二次第三次第四次第五次甲命中环数78889乙命中环数1061068甲,乙两名射击选手的测试成绩统计如下:⑴请分别计算两名射手的平均成绩;教练的烦恼乙x=8(环)=8(环)甲x第一次第二次第三次第四次第五次甲命中环数78889乙命中环数1061068012234546810甲,乙两名射击选手的测试成绩统计如下:成绩(环)射击次序⑴请分别计算两名射手的平均成绩;⑵请根据这两名射击手的成绩在下图中画出折线统计图;教练的烦恼第一次第二次第三次第四次第五次甲命中环数78889乙命中环数1061068012234546810甲,乙两名射击选手的测试成绩统计如下:成绩(环)射击次序⑴请分别计算两名射手的平均成绩;⑵请根据这两名射击手的成绩在下图中画出折线统计图;⑶现要挑选一名射击手参加比赛,若你是教练,你认为挑选哪一位比较适宜?为什么?教练的烦恼甲射击成绩与平均成绩的偏差的和:乙射击成绩与平均成绩的偏差的和:(7-8)+(8-8)+(8-8)+(8-8)+(9-8)=0(10-8)+(6-8)+(10-8)+(6-8)+(8-8)=0(10-8)2+(6-8)2+(10-8)2+(6-8)2+(8-8)2=(7-8)2+(8-8)2+(8-8)2+(8-8)2+(9-8)2=甲射击成绩与平均成绩的偏差的平方和:乙射击成绩与平均成绩的偏差的平方和:找到啦!有区别了!216上述各偏差的平方和的大小还与什么有关?——与射击次数有关!所以要进一步用各偏差平方的平均数来衡量数据的稳定性设一组数据x1、x2、…、xn中,各数据与它们的平均数的差的平方分别是(x1-x)2、(x2-x)2、…(xn-x)2,那么我们用它们的平均数,即用S2=[(x1-x)2+(x2-x)2+…+(xn-x)2]1n方差越大,说明数据的波动越大,越不稳定.方差用来衡量一批数据的波动大小.(即这批数据偏离平均数的大小).S2=[(x1-x)2+(x2-x)2+…+(xn-x)2]1n方差:各数据与它们的平均数的差的平方的平均数.计算方差的步骤可概括为“先平均,后求差,平方后,再平均”.概括1、样本方差的作用是()(A)表示总体的平均水平(B)表示样本的平均水平(C)准确表示总体的波动大小(D)表示样本的波动大小3、在样本方差的计算公式数字10表示,数字20表示.)20(2...)20(22)20(121012sxnxx2、样本5、6、7、8、9的方差是.D2样本平均数样本容量4、计算下列各组数据的方差:(1)6666666;(2)5566677;(3)3346899;(2)3336999;在一次芭蕾舞比赛中,甲、乙两个芭蕾舞团表演了舞剧《天鹅湖》,参加表演的女演员的身高(单位:cm)分别是甲团163164164165165165166167乙团163164164165166167167168哪个芭蕾舞团女演员的身高更整齐?166816821671661652164163165816716631652164163乙甲——xx75.2836.18)166168()166164()166163(16516716516416516322222222ss乙甲)()()(解:甲、乙两团演员的平均身高分别是.22员的身高更整齐可知,甲芭蕾舞团女演由乙甲ss为了考察甲、乙两种小麦的长势,分别从中抽出10株苗,测得苗高如下(单位:cm):甲:12131415101613111511乙:111617141319681016问哪种小麦长得比较整齐?思考:求数据方差的一般步骤是什么?1、求数据的平均数;2、利用方差公式求方差。S2=[(x1-x)2+(x2-x)2+…+(xn-x)2]1n小结:谈谈自己这节课你学到什么?1.方差:各数据与平均数的差的平方的平均数叫做这批数据的方差.2.方差用来衡量一批数据的波动大小(即这批数据偏离平均数的大小).在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定.S2=[(x1-x)2+(x2-x)2++(xn-x)2]n1课本P128习题20.2第2题、第3题。今日作业再见!
本文标题:20.2数据的波动程度(一)课件
链接地址:https://www.777doc.com/doc-4755531 .html