您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 反比例函数的图像和性质
《反比例函数的图像和性质(1)》教学设计第一部分教学设计一、内容和内容解析本节课内容属于《全日制义务教育数学课程标准(实验稿)》中的“数与代数”领域,是在已经学习了平面直角坐标系和一次函数的基础上,进一步研究反比例函数的图象,并通过图象的研究和分析,来确定反比例函数的性质.反比例函数是最基本的初等函数之一,是学习后续各类函数的基础.反比例函数的核心内容是反比例函数的概念、图象和性质.反比例函数的图象和性质的核心,是图象“特征”、函数“特性”以及它们之间的相互转化关系,这也正是反比例函数的本质属性所在.反比例函数的图象和性质,蕴含着丰富的数学思想.首先,反比例函数图象和性质,本身就是“数”与“形”的统一体.通过对图象的研究和分析,可以确定函数本身的性质,体现了数形结合的思想方法.这在学习数轴、平面直角坐标系时,学生已经接触过,结合本课内容,可以进一步加强对数形结合思想方法的理解,发挥从“数”和“形”两个方面共同分析解决问题的优势.其次,从本节课知识的形成过程来看,由“解析式(确定自变量取值范围)”到“作图(列表、描点、连线)”,再到“性质(观察图象探究性质)”,充分体现了由“数”到“形”,再由“形”到“数”的转化过程,这种函数解析式及性质与函数图象之间的联系,突出体现了两者间的转化对分析解决问题的特殊作用,是转化思想的具体应用.再次,将函数中变量、之间的对应关系,通过图象的形状、变化趋势,借助平面直角坐标系和点的坐标,直观地予以呈现,这又充分体现了变化与对应的数学思想.对于反比例函数图象及性质的研究与学习,尽管还处于函数学习的初级阶段,但它所体现的函数学习的一般规律和方法,是继一次函数学习之后的再一次强化.教材中呈现的“函数概念——函数的图象和性质——函数的实际应用”的结构,是学习初等函数时不可或缺的.使学生理解这样的“同构现象”,对于明确学习任务,建立完善的认知结构也将是非常有意义的.再有,用描点法画反比例函数的图象时,先由函数解析式考虑自变量的取值范围,分析、的对应变化关系,然后构思函数图象的大致位置、轮廓、趋势,进而列表、描点、连线作出函数图象,反映了作函数图象的一般规律.另外,利用图象“特征”确定函数“特性”,也是初中阶段研究函数性质的常用方法.此外,反比例函数图象和性质的学习,是继一次函数后,知识与方法上的一次拓展,理解与认识上的一次升华,也是思维上的一次飞跃.图象由由“一条”到“两支”,形态由“直”到“曲”,由“连续”到“间断”,由与坐标轴“相交”到“渐近”,无不折射出对函数概念本质属性认识的进一步深化.因此,学好本节课内容将为今后的函数学习奠定坚实的基础.教学重点:反比例函数的图象和性质.二、目标和目标解析(一)教学目标1.会画反比例函数图象,理解反比例函数的图象和性质.2.感悟“数形结合”、“变化与对应”和“转化”的数学思想,并能应用数形结合和转化思想根据反比例函数的图象探究其性质.3.培养学生的观察、分析、探究、归纳及概括能力.(二)目标解析1.本节教学内容的脉络是:先使用描点法画出反比例函数的图象,然后依据图象分析、探究、归纳得到函数的性质.因此,准确画出反比例函数的图象,是探究反比例函数性质的前提.此时,虽然学生已经学过用描点法画函数图象,但是由于反比例函数图象的特殊性,会画反比例函数的图象,仍是学习中的目标之一.通过列表、描点、画出反比例函数的图象,进而观察、分析、探究、归纳、概括,得到反比例函数的性质,可以进一步加深对函数三种表示方法(列表法、解析式法和图象法)的理解;2.数学思想的教学一般要经过渗透孕育期、领悟形成期、应用发展期、巩固深化期四个阶段,而非能复制与灌输.在探究反比例函数性质时,让学生领悟到数形结合思想、转化思想、变化与对应思想的存在,并能运用这些数学思想观察、分析反比例函数的图象,探究、归纳、概括反比例函数的性质.3.通过对反比例函数性质探究,使学生经历观察、分析、探究、归纳、概括的认知过程,培养学生良好的思维品质,提高学生思维能力.三、教学问题诊断分析对于用描点法画函数的图象,学生已经学过,但因当时处于函数学习的初始阶段,重点只是让学生掌握用描点法画函数图象的“三步曲(列表、描点、连线)”,所以,学生对每步要求的理解并不深刻.因此,在画反比例函数图象时,常遇到如下的问题:(1)“列表”时确定自变量的取值缺乏代表性及忽略等现象;(2)“连线”时,由于一次函数图象是一条直线,容易使学生产生知识上的负迁移,把双曲线画成折线;(3)对双曲线与轴、轴“越来越靠近”但不相交的趋势不易理解.教学时,应注意有针对性的引导,注意从解析式的分析入手,让学生先进行“数”(,,)、“式”(解析式中、的反比例关系)的分析,进而过渡到对“形”(图象)的认识.在学习一次函数的时候,学生已经历过观察、分析图象的特征,抽象、概括函数性质的过程,对研究函数性质所用的探究方法也有一定的了解、因此,通过类比,结合反比例函数的图象探究性质,从使用的方法上不会存在障碍,但由于反比例函数图象比一函数图象的形态丰富,结构复杂,具有自身的特殊性,故对性质的深刻理解和掌握,对性质探究中的数学思想的体会和运用,还存在一定的困难.教学中,应注重强调说明由“数”到“形”、由“形”到“数”的转化关系,以“数”与“形”的转化为途径,展开探究活动.教学难点:准确画出反比例函数的图象,理解反比例函数的性质,并能灵活应用.四、教学支持条件分析根据本节课教材内容的特点,为了更直观、形象地突出重点,突破难点,借助信息技术工具,以几何画板软件为平台,绘制反比例函数图象,同时辅之以“点跟踪”等手段,通过动态的演示,观察相关数值的变化,研究图象的变化趋势,抽象概括当自变量变化时,对应的函数值的变化规律,进而探究反比例函数的性质.五、教学过程设计(一)创设情境,引入新知问题1:我们已经学习了正比例函数的哪些内容?是如何研究的?以正比例函数为例.师生活动:教师提问,学生思考、回答,教师根据学生回答的情况加以补充,并将答案填写在黑板的表格中,强调是从形状、位置、变化趋势三个方面去研究.【设计意图】通过复习正比例函数的图象和性质,以及研究函数的一般方法,为学习反比例函数的图象和性质做好铺垫.(二)观察探究,形成新知问题2:反比例函数的图象是什么样的?以画出反比例函数的图象为例,教师引导学生经历列表、描点、连线的过程.(1)列表:…-6-5-4-3-2-1123456………列表时,关注学生是否注意到自变量的取值应使函数有意义(即),同时,所取的点既要使自变量的取值有一定的代表性,又不至于使自变量或对应的函数值太大或是太小,以便于描点和全面反映图象的特征;(2)描点:一般情况下,所选的点越多图象越精确;(3)连线:引导学生用平滑的曲线,按照自变量从小到大的顺序连接各点,注意图象末端的延伸和延伸的趋势,得到反比例函数的图象.师生活动:教师引导学生列表、描点、作图;展示学生作品;教师板书示范,并通过课件演示反比例函数图象的生成过程,给出双曲线的名称,并渗透它的形态特征.【设计意图】图象是直观地描述和研究函数的重要工具,通过经历用描点法画出反比例函数图象的基本步骤,可以使学生对反比例函数先有一个初步的感性认识.问题3:请观察反比例函数的图象,有哪些特征?师生活动:教师引导学生观察,类比正比例函数,归纳说出反比例函数图象的形状、位置、变化趋势及其函数的增减性.【设计意图】通过类比正比例函数,引导学生观察图象的形状、位置、变化趋势,感受“形”的特征,感受自变量与函数值之间变化与对应的关系,使学生对反比例函数的图象和性质形成初步的印象.问题4:是不是所有的反比例函数的图象都具有这样的特征呢?以讨论反比例函数为例.在教师引导下,学生借鉴画反比例函数的图象的经验,自主画出反比例函数的图象,教师巡视指导.作图完成后,学生展示作品,并说出该函数图象的特征,教师适时点评.【设计意图】通过再次画出反比例函数的图象,使学生巩固前面已获得的作图经验,提高学生利用描点法画出函数图象的能力.同时,在总结说出反比例函数的图象特征的过程中,使学生增强对图象的观察、感知、分析、概括的能力,以及经历通过画出函数图象,并利用图形研究函数性质的过程.问题5:反比例函数与的图象有什么共同特征?有什么不同点?是由什么决定的?师生活动:教师启发学生对比、思考,组织学生讨论,引导学生关注反比例系数“”的作用.【设计意图】学生通过观察比较,总结这两个反比例函数图象的特征,在活动中,让学生自己去观察、发现、总结,实现学生主动参与,探究新知的目的.问题6:当取不同的值,上述结论是否适用于所有的反比例函数?教师演示课件,赋予不同的值,观察所得到的不同的反比例函数图象的特征,引导学生归纳“变化中的规律性”.然后,从解析式的角度,引导学生分析上述结论的合理性.【设计意图】通过计算机动态演示,验证猜想,使学生经历从特殊到一般的过程,加强对反比例函数图象“特征”和函数“特性”以及它们之间的相互转化关系的认识.问题7:总结反比例函数()图象的特征和性质.教师帮助学生梳理、归纳,填写表格:函数图象形状图象位置图象变化趋势函数增减性【设计意图】通过归纳,培养学生抽象概括能力.(三)巩固提高,应用新知课堂练习:1.下列图象中,可以是反比例函数的图象的是().2.已知反比例函数的图象如图所示,则0,且在图象的每一支上,值随的增大而.3.已知反比例函数的图象过点(2,1),则它的图象在象限,且0.4.若反比例函数()的图象上有两点(,),(,),且,则的值是().(A)正数(B)负数(C)非正数(D)非负数【设计意图】通过一系列的练习,可以实现知识向能力的转化.(四)归纳反思,深化新知问题8:通过本节课的学习,你有哪些收获?学生谈本节课的学习感受,教师梳理、概括本节课主要的学习内容,并揭示蕴涵的数学思想方法.【设计意图】教师引导学生归纳本节课的知识要点和思想方法,使学生对反比例函数的图象和性质有一个较为整体、全面认识,同时,使学生养成良好的学习习惯.布置作业:(1)基础达标:教材中练习的第1、2题,习题17.1的第3题;(2)反思提升:将反比例函数(为常数,)与正比例函数(为常数,)进行对比,可以从如下方面考虑:①两种函数的解析式有何相同与不同?两种函数的图象的特征有何区别?②在常数相同的情况下,当自变量变化时,两种函数的函数值的变化趋势有什么区别?③两种函数中的取值范围有何不同?常数的符号改变对两种函数图象所处象限的影响如何?六、目标检测设计1.反比例函数的图象在().(A)第一、二象限(B)第一、三象限(C)第二、三象限(D)第二、四象限2.在同一直角坐标系中,函数与的图象大致是().3.写出一个反比例函数,使得该反比例函数的图象在第一、三象限,该函数可以是;若点在该函数的图象上,则点的坐标可以是.(分别写出一个即可)4.若双曲线,当时,随的增大而增大,则的取值范围是.5.已知反比例函数,(1)填写表格中相应的的值:…-6-5-4-3-2-1123456………(2)根据表中的数据,描点画出函数的图象.6.某住宅小区要种植一个面积是1000m2的矩形草坪,设草坪的长为(单位:m),宽为(单位:m),(1)与之间有怎样的函数关系;(2)画出该函数的图象;(3)若限定草坪的宽大于10m且不超过20m,求草坪的长的范围.2013-01-18人教网关闭打印推荐给朋友大中小【上一篇】《中位数与众数》教学设计说明【下一篇】《从分数到分式》教学设计说明
本文标题:反比例函数的图像和性质
链接地址:https://www.777doc.com/doc-4755975 .html