您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 汽车理论 > 新能源汽车技术05-新能源汽车电池-燃料电池
氢能源:绿色零排放,或是能源终极形式历史纵向看:能源使用清洁程度不断提升环境保护意识的增强推动能源利用向着绿色、清洁化的方向发展。从最开始的草木发展到如今的风能、太阳能、核能、地热能等多种形式,能源使用过程的污染物排放逐渐降低,这代表这人类能源使用的方向。而目前已知的所有能源中,最为清洁的是氢能,氢气使用过程产物是水,可以真正做到零排放、无污染,被看做是最具应用前景的能源之一,或成为能源使用的终极形式。能源使用历史从物质能量密度角度看,氢能源高于汽油、柴油和天然气。美国能源局数据显示,氢气功率密度几乎是其他化石燃料的3倍多。不同能源功率密度对比(KW/kg)不同能源发电建设成本对比($/KW)可以看到氢能源在功率密度、成本方面具有优势,同时兼具环境友好性,其应用前景十分广阔。从发电建设成本来讲,氢能源发电建设成本最低。EIA数据显示,氢气发电建设成本仅580美元/KW,在风能、天然气、光伏、石油、生物质能发电等众多方式中成本最低。氢能源应用阻碍:分布式应用场景综合成本高与加氢难虽然氢气在理论层面相较于其他能源具有功率密度优势,且用于发电时建设成本较低,但是这仅考虑了发电时利用氢能源的模式。氢能源大范围推广使用离不开分布式使用场景,当应用场景发生变化时,氢能源使用需要考虑的影响因素就变得更为复杂。分布式应用场景中与替代产品相比成本较高。氢能源的清洁利用主要是通过燃料电池,燃料电池应用在分布式应用场景中的时候与其他可替代方式相比,还存在成本高的问题。以氢能源燃料电池汽车为例,应用氢能源首先要考虑购买产品的成本,燃料电池本就是技术含量高的产品,应用到汽车上时使得汽车的一次性购臵成本迅速增长;其次考虑维护成本,燃料电池汽车比其他汽车更为精密,因此其维护成本更高;再次考虑消耗燃料的成本,氢气由于在制备、储存、运输等过程中需要更多的技术处理而具有更高的单位成本;最后考虑配套设施设施成本,燃料电池汽车使用需要众多加氢站支持,加氢站由于需要配置大型压缩机等大型设备,具有比加油站和充电站更高的建设成本。综合考虑之下,分布式应用场景中,氢能源应用综合成本很高。欧洲氢能源燃料电池汽车与其他燃料汽车使用成本对比(小汽车)欧洲市场燃料电池小汽车的综合使用成本达到0.24欧元/km,高于纯电动和柴油汽车的综合使用成本。因为氢气出售时会考虑氢气制备、运输以及加氢站建设、运营等成本,所以氢气价格里面包含了这些相关配套设施的成本。因此这一成本就是氢能源以燃料电池形式应用到小汽车上的全成本。氢气使用便利程度不如可替代产品氢气利用另一大难题是加氢难。因为设备与技术要求,加氢站的建设运营成本远高于加油站和充电站,目前加氢站的数量还不足以完全满足商业化应用的需求。汽油和电力的广泛使用是以加油站和电网覆盖为前提的,氢能源大规模使用也要以加氢站覆盖为基础。截止2017年底,全球共计加氢站328个,而国内仅有9座。加氢站覆盖范围小对于氢能源的利用有不小的阻碍。国际汽车制造商协会数据显示,2017年全球销售乘用车接近0.71亿辆,而势银智库数据显示2017年全球FCV(燃料电池汽车)销量3260辆(燃料电池汽车大多使用氢能源作为燃料,极少数使用其他燃料,在此暂且先认为这些FCV都使用了氢气做燃料),氢能源在汽车领域渗透率不过0.0046%,在汽车应用领域氢能源产业化尚处于导入期。氢能源应用需求:三大应用场景,交运需求渐成主流氢能源主要是通过燃料电池得到应用,而且燃料电池使用的燃料也主要是氢气,因此我们可以根据氢燃料电池的应用将氢能源的应用分为三大场景:便携式应用场景、固定式应用场景、交通运输应用场景。便携式应用主要在辅助充电设备(户外等场景)、军用等产品,固定式应用主要在家庭热电联产、家用燃料电池、通信基站备用电源、不间断电源等产品,交通运输应用主要在汽车等产品上。FuelCellToday和E4tech数据显示,燃料电池装机逐年增长,2012年-2017年复合增长率达到32.1%,其中交通运输领域的应用比例逐年上升,2017年交运领域的装机占比已经达到68.05%。交运领域的需求已经成为燃料电池主要需求,也是氢能源的主要需求。燃料电池装机快速增长(单位:MW)交运需求逐渐成为燃料电池主要需求(单位:MW)氢能源主产业链:日益完善,整装待发氢能源主产业链包括上游氢气制备、氢气运输储存、中游氢燃料电池、下游氢能源燃料电池应用等多个环节。上游氢气制备包括氯碱工业副产氢、电解水制氢、化工原料制氢(甲醇裂解、乙醇裂解、液氨裂解等)、石化资源制氢(石油裂解、水煤气法等)和新型制氢方法(生物质、光化学等)等多种途径;氢气储存包括气态储氢、液态储氢、固态合金储氢三种方式,氢气运输包括罐车运输、管道运输等方法途径;中游氢燃料电池涉及质子交换膜、扩散材料、催化剂等多种零部件和关键材料;下游燃料电池应用包括便携式应用、固定式应用、交通运输应用。氢能源产业链的完善需要很多专用装备支持,而且大多数技术含量高,主要集中在制氢、储氢领域氢能源产业链关键设备制取氢气目前主要的方法有化工原料制氢、石化资源制氢、电解水制氢等多种途径。化工原料制氢主要使用的原料是甲醇、乙醇、液氨等,具有制取氢气纯度高、反应要求低等优点;石化资源制氢主要使用石油、水煤气、天然气等资源,具有规模效应,且原料易获取;电解水制氢使用的原材料是水,具有原料可再生、可依赖的特点,如果使用清洁电力可实现全程无污染,但是过程中耗费大量电能,成本昂贵;未来在氢气制取环节,会存在两种运营形式。第一种是中央制氢,典型的运营模式是在城市周边地区建设大规模氢气生产厂,然后通过运氢车将氢气运输到城市中的加氢站,再由加氢站出售给消费者。第二种是分布式制氢,城市中的加氢站在站内装有氢气发生器,实现氢气生产、压缩、储存、出售一体化,或者在应用端直接安装氢气发生器,实现应用端自产自供氢气。未来中央产氢和分布式产氢两种形式并存较为合理。制氢储氢方式有三种,分别是气态储氢、液态储氢、固态储氢。气态储氢主要是将氢气直接储存在高压罐中,又细分为低压储存和高压储存,低压储存使用巨大的水密封储槽储存,高压储存是通过对氢气加压减小体积储存在容器中;液态储氢是将氢气冷却到一定低的温度之下,使氢气呈现液态,然后再将其储存到特定容器中;固态储氢是利用金属合金(一般称为储氢合金)晶格间隙吸附氢原子,(涉及到氢气分子转化为氢原子的过程),同时表面还可以在表面结合一部分氢分子。气态储氢是目前主流的储氢方式。气态储氢最大的优点是使用方便,储存要求条件易满足,成本低。液态储氢需要先提供极低的温度,之后储存的容器还必须采用双层真空隔热结构,液态氢沸点低,仅为20.38K(-253℃),气化潜热小,仅0.91kj/mol,罐内液氢和外界存在巨大的温度差,一旦隔热工作没做好,液氢将大规模沸腾挥发损失,目前的技术只能保证液氢每天1%-2%的挥发,作为对照,汽油每月只损失1%。固体合金储氢可以做到安全、高效、高密度,不仅可以在表面吸附氢分子,还可以在一定温度和压力下让氢分子分解成为氢原子,进入合金的八面体或四面体间隙(金属原子堆垛时形成的空隙),形成金属化合物,可吸收相当于储氢合金体积1000-3000倍的氢气,储氢能力极其强大。常见的储氢合金有钛系合金、锆系合金、铁系合金、稀土系合金。其主要问题在于储存和释放氢气的过程主要是化学反应的过程,需要一定的温度和压强环境,使用不方便,同时储氢合金一般成本较高。储氢不同储氢方式对比虽然目前大范围使用的是气态储氢,但是固态合金储氢方式性能卓越,是三种方式中最为理想的储氢方式,是储氢科研领域的前沿方向之一。随着技术进步,储氢合金吸收释放氢气的条件要求可能降低和改善,非稀土系金属合金的开发研究可以降低储氢成本,储氢合金使用便利性的提升和成本的降低有望使得储氢合金成为未来主流的储氢方式。国际能源署(IEA)在1998年提出了如下目标:重量储氢密度5wt%,体积储氢密度50kg/m3,放氢工作温度1100次.5wt%指的是存储的氢气的重量与储氢材料的重量比为5:95目前能够达到20wt%,是在实验室最优条件下达到的理想值,要想在工业化生产条件下达到这个值还有很长的路要走。加氢站目前,为了支持燃料电池汽车发展,各国积极建设氢能源燃料电池汽车配套设施。根据规划,到2020年,中国将建成100座加氢站,到2030年将建成1000座加氢站,日本在2020年前建成160个加氢站,韩国计划到2020年建成80座加氢站,德国到2020年也预计达到100座加氢站的规模。世界上几个建设加氢站的大国都以2020年100座加氢站为目标。而截至2017年底我国加氢站共有9座,北京、上海各2座,深圳、广州各1座,还有一座移动加氢站,另外2座归属新源动力和宇通客车,这距离我国2020年100座加氢站的目标还有很大距离,同时也表明,未来两年内加氢站建设进度会急剧增加,相关方面需求巨大,也是机会点。各国加氢站布局计划国家规划内容中国到2020年,加氢站数量达到100座;燃料电池车辆达到10000辆;氢能轨道交通车辆达到50列;到2030年,加氢站数量达到1000座,燃料电池车辆保有量达到200万辆;到2050年,加氢站网络构建完成,燃料电池车辆保有量达到1000万辆。日本在2020年前共完成160个加氢站的建设韩国2020年,氢燃料电池汽车预计达到9000辆。2025年,将达到150000辆,2030年达到630000辆。加氢站预计2020年达到80座,2025年达到210座,2030年达到520座。德国到2019年,德国加氢站数量预计将增加到100座美国2024年前,丰田联合壳牌计划在美国加州部署建造100座加氢站的计划。技术路线:看好站内制氢加氢方案发展前景加氢站的技术路线有:站内制氢技术和外供氢技术。站内制氢加氢站技术主要是用天然气或者其他原料在加氢站内自己制氢然后加注到燃料电池汽车中,或者通过电解水制取氢气然后压缩,再加注到氢能源燃料电池汽车中。天然气通过管道输送到加氢站,加氢站配备有自己的制氢和压缩氢气的设备。其中,电解水制氢技术在国外已经十分成熟,欧洲大多数加氢站都采用这种技术;外供氢加氢站的氢气供氢气来源多样,包括中央产氢厂产出的氢气、氯碱厂副产氢等多种来源,一般使用高压氢气瓶集束拖车运输。站内制氢加氢站运营模式外供氢加氢站运营模式站内制氢加氢比外供氢气少了汽车运输成本,可以利用原有的天然气管道或者送水管道,成本相对较低。而且电解水在现阶段仍因为电价因素综合成本高于天然气制氢成本,从成本角度和配套设施完备程度来看,使用天然气的站内制氢加氢站比较符合实际情况。从便利性角度看,站内制氢加氢可以随时制取,方便快捷。但是加氢站一般建在城市内或者城市周边,面积限制决定了其氢气产能产量不一定够用,因此中央制氢通过运氢车运到加氢站的模式作为补充形式具有存在的合理性。考虑到中央制氢厂建设投入大,资金需求高,且运营成本高,因此可能是由政府部门建设运营,形成“市场化的站内制氢加氢站点主导,少数大型中央产氢厂补充”的格局。我们看好站内加氢制氢模式带来的投资机会。燃料电池是一项高效的绿色发电技术。燃料电池是一种电化学反应装置,直接将化学能转化为电能。燃料电池同样有正负极和电解质,只需要将负极注入燃料(一般为氢气),正极输送空气或氧气,便可产生稳定的电流。与传统发电方式相比,燃料电池能量转换效率高,而且具备零排放、无污染、噪声低、安装灵活等优点。燃料电池的主要应用领域包括交通运输、固定发电站,其中在交通运输领域燃料电池汽车被视为新能源汽车的终极绿色解决方案。新能源汽车电池——燃料电池燃料电池与普通电池的最大的区别在于没有电池容量的问题:普通电池是将活性物质贮存在电池内正负极,电池容量决定于活性物质可释放的化学能,因此容量有限;而燃料电池本身不包含活性物质,电极只是催化元件,通过不断的在正极输入空气或氧气,负极输入燃料就可以产生源源不断的稳定电流。燃料电池原理燃料电池是一种连续地将燃料和氧化剂的化学能直接转换成电能的化学电池。该化学反应原理可以看做电解水的逆过程,反应方程如下:氢氧燃料电池酸
本文标题:新能源汽车技术05-新能源汽车电池-燃料电池
链接地址:https://www.777doc.com/doc-4758064 .html