您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 2018北京西城初三一模数学试卷及答案
1/17北京市西城区2018年九年级统一测试数学试卷一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1.在国家大数据战略的引领下,我国在人工智能领域取得显著成就,自主研发的人工智能“绝艺”获得全球最前沿的人工智能赛事冠军,这得益于所建立的大数据中心的规模和数据存储量,它们决定着人工智能深度学习的质量和速度,其中的一个大数据中心能存储58000000000本书籍,将58000000000用科学记数法表示应为().A.105.810B.115.810C.95810D.110.58102.在中国集邮总公司设计的2017年纪特邮票首日纪念戳图案中,可以看作中心对称图形的是().A.B.C.D.3.将34bb分解因式,所得结果正确的是().A.2(4)bbB.2(4)bbC.2(2)bbD.(2)(2)bbb4.如图是某个几何体的三视图,该几何体是().A.三棱柱B.圆柱C.六棱柱D.圆锥5.若实数a,b,c,d在数轴上的对应点的位置如图所示,则正确的结论是().俯视图左视图主视图2/17A.5aB.0bdC.0acD.cd6.如果一个正多边形的内角和等于720,那么该正多边形的一个外角等于().A.45B.60C.72D.907.空气质量指数(简称为AQI)是定量描述空气质量状况的指数,它的类别如下表所示.AQI数据0~5051~100101~150151~200201~300301以上AQI类别优良轻度污染中度污染重度污染严重污染某同学查阅资料,制作了近五年1月份北京市AQI各类别天数的统计图如下图所示.根据以上信息,下列推断不合理的是A.AQI类别为“优”的天数最多的是2018年1月B.AQI数据在0~100之间的天数最少的是2014年1月C.这五年的1月里,6个AQI类别中,类别“优”的天数波动最大D.2018年1月的AQI数据的月均值会达到“中度污染”类别8.将A,B两位篮球运动员在一段时间内的投篮情况记录如下:投篮次数102030405060708090100A投中次数7152330384553606875投中频率0.7000.7500.7670.7500.7600.7500.7570.7500.7560.750B投中次数8142332354352617080投中频率0.8000.7000.7670.8000.7000.7170.7430.7630.7780.800下面有三个推断:①投篮30次时,两位运动员都投中23次,所以他们投中的概率都是0.767.0246810121416优良轻度污染中度污染重度污染严重污染2014年1月2015年1月2016年1月2017年1月2018年1月时间天数123446789610121032134691141210dcba0-1-2-3-4-5123453/17yxEODCBA②随着投篮次数的增加,A运动员投中频率总在0.750附近摆动,显示出一定的稳定性,可以估计A运动员投中的概率是0.750.④投篮达到200次时,B运动员投中次数一定为160次.其中合理的是().A.①B.②C.①③D.②③二、填空题(本题共16分,每小题2分)9.若代数式11xx的值为0,则实数x的值为__________..10.化简:()()42(1)aaaa__________.11.如图,在ABC△中,DEAB∥,DE分别与AC,BC交于D,E两点.若49DECABCSS△△,3AC,则DC__________.12.从杭州东站到北京南站,原来最快的一趟高铁G20次约用5h到达.从2018年4月10日起,全国铁路开始实施新的列车运行图,并启用了“杭京高铁复兴号”,它的运行速度比原来的G20次的运行速度快35km/h,约用4.5h到达。如果在相同的路线上,杭州东站到北京南站的距离不变,设“杭京高铁复兴号”的运行速度.设“杭京高铁复兴号”的运行速度为km/hx,依题意,可列方程为__________.13.如图,AB为⊙O的直径,C为AB上一点,50BOC,ADOC∥,AD交⊙O于点D,连接AC,CD,那么ACD__________.14.在平面直角坐标系xOy中,如果当0x时,函数1ykx(0k)图象上的点都在直线1y上方,请写出一个符合条件的函数1ykx(0k)的表达式:__________.15.如图,在平面直角坐标系xOy中,点A的坐标为(1,0)A,等腰直角三角形ABC的边AB在x轴的正半轴上,90ABC,点B在点A的右侧,点C在第一象限。将ABC△绕点A逆时针旋转75,如果点C的对应点E恰好落在y轴的正半轴上,那么边AB的长为__________.16.阅读下面材料:EDCBAODCBA4/17EDCBA在复习课上,围绕一道作图题,老师让同学们尝试应用学过的知识设计多种不同的作图方法,并交流其中蕴含的数学原理.已知:直线和直线外的一点P.求作:过点P且与直线l垂直的直线PQ,垂足为点QP某同学的作图步骤如下:步骤作法推断第一步以点P为圆心,适当长度为半径作弧,交直线l于A,B两点.PAPB第二步连接PA,PB,作APB的平分线,交直线l于点Q.APQ__________直线PQ即为所求作.PQl请你根据该同学的作图方法完成以下推理:∵PAPB,APQ__________,∴PQl.(依据:__________).三、解答题(本题共68分,第17~19题每小题5分,第20题6分,第21、22题每小题5分,第23题6分,第24题5分,第25、26题每小题6分,第27、28题每小题7分)17.计算:11184sin30215.18.解不等式组3(2)4112xxx≥,并求该不等式组的非负整数解.19.如图,AD平分BAC,BDAD于点D,AB的中点为E,AEAC.(1)求证:DEAC∥.(2)点F在线段AC上运动,当AFAE时,图中与ADF△全等的三角形是__________.20.已知关于x的方程2(3)30mxmx(m为实数,0m).5/17BDAO-1-111BMA(1)求证:此方程总有两个实数根.(2)如果此方程的两个实数根都为正整数,求整数m的值.21.如图,在ABD△中,ABDADB,分别以点B,D为圆心,AB长为半径在BD的右侧作弧,两弧交于点C,分别连接BC,DC,AC,记AC与BD的交点为O.(1)补全图形,求AOB的度数并说明理由;(2)若5AB,3cos5ABD,求BD的长.22.如图,在平面直角坐标系xOy中,直线yxm与x轴的交点为0()4,A,与y轴的交点为B,线段AB的中点M在函数kyx(0k)的图象上(1)求m,k的值;(2)将线段AB向左平移n个单位长度(0n)得到线段CD,A,MB的对应点分别为C,N,D.①当点D落在函数kyx(0x)的图象上时,求n的值.②当MDMN≤时,结合函数的图象,直接写出n的取值范围.23.某同学所在年级的500名学生参加“志愿北京”活动,现有以下5个志愿服务项目:A.纪念馆志愿讲解员.B.书香社区图书整理.C.学编中国结及义卖.D.家风讲解员.E.校内志愿服务.要求:每位6/17学生都从中选择一个项目参加,为了了解同学们选择这个5个项目的情况,该同学随机对年级中的40名同学选择的志愿服务项目进行了调查,过程如下:收集数据:设计调查问卷,收集到如下数据(志愿服务项目的编号,用字母代号表示).B,E,B,A,E,C,C,C,B,B,A,C,E,D,B,A,B,E,C,A,D,D,B,B,C,C,A,A,E,B,C,B,D,C,A,C,C,A,C,E,整理、描述诗句:划记、整理、描述样本数据,绘制统计图如下,请补全统计表和统计图.选择各志愿服务项目的人数统计表志愿服务项目划记人数A.纪念馆志愿讲解员正8B.书香社区图书整理C.学编中国结及义卖正正12D.家风讲解员E.校内志愿服务正6合计4040选择各志愿服务项目的人数比例统计图A.纪念馆志愿讲解员B.书香社区图书整理C.学编中国结及义卖E.校内志愿服务D.家风讲解员分析数据、推断结论:a:抽样的40个样本数据(志愿服务项目的编号)的众数是__________.(填AE的字母代号)b:请你任选AE中的两个志愿服务项目,根据该同学的样本数据估计全年级大约有多少名同学选择这两个志愿服务项目.24.如图,⊙O的半径为r,ABC△内接于⊙O,15BAC,30ACB,D为CB延长线上一点,AD与⊙O相切,切点为A.%%30%20%15%EDCBA7/17AOBCD(1)求点B到半径OC的距离(用含r的式子表示).(2)作DHOC于点H,求ADH的度数及CBCD的值.25.如图,P为⊙O的直径AB上的一个动点,点C在»AB上,连接PC,过点A作PC的垂线交⊙O于点Q.已知5cmAB,3cmAC.设A、P两点间的距离为cmx,A、Q两点间的距离为cmy.某同学根据学习函数的经验,对函数y随自变量x的变化而变化的规律进行探究.下面是该同学的探究过程,请补充完整:(1)通过取点、画图、测量及分析,得到了x与y的几组值,如下表:(cm)x012.533.545(cm)y4.04.75.04.84.13.7(说明:补全表格对的相关数值保留一位小数)(2)建立平面直角坐标系,描出以补全后的表中各对对应值为坐标的点,画出该函数的图象.(3)结合画出的函数图象,解决问题:当2AQAP时,AP的长度均为__________cm.26.在平面直角坐标系xOy中,抛物线G:221(0)ymxmxmm与y轴交于点C,抛物线G的顶点为D,直线l:1(0)ymxmm.(1)当1m时,画出直线l和抛物线G,并直接写出直线l被抛物线G截得的线段长.OQPCBA8/17(2)随着m取值的变化,判断点C,D是否都在直线l上并说明理由.(3)若直线l被抛物线G截得的线段长不小于2,结合函数的图象,直接写出m的取值范围.27.正方形ABCD的边长为2,将射线AB绕点A顺时针旋转,所得射线与线段BD交于点M,作CEAM于点E,点N与点M关于直线CE对称,连接CN.(1)如图1,当045时,①依题意补全图1.②用等式表示NCE与BAM之间的数量关系:__________.(2)当4590时,探究NCE与BAM之间的数量关系并加以证明.(3)当090时,若边AD的中点为F,直接写出线段EF长的最大值.28.对于平面内的⊙C和⊙C外一点Q,给出如下定义:若过点Q的直线与⊙C存在公共点,记为点A,B,设AQBQkCQ,则称点A(或点B)是⊙C的“k相关依附点”,特别地,当点A和点B重合时,规定Oxy11CDBA图1备用图CDBAM9/17AQBQ,2AQkCQ(或2BQCQ).已知在平面直角坐标系xOy中,(1,0)Q,(1,0)C,⊙C的半径为r.(1)如图1,当2r时,①若1(0,1)A是⊙C的“k相关依附点”,则k的值为__________.②2(12,0)A是否为⊙C的“2相关依附点”.答:__________(填“是”或“否”).(2)若⊙C上存在“k相关依附点”点M,①当1r,直线QM与⊙C相切时,求k的值.②当3k时,求r的取值范围.(3)若存在r的值使得直线3yxb与⊙C有公共点,且公共点时⊙C的“3相关依附点”,直接写出b的取值范围.答案1.【答案】A【解析】用科学记数法表示为105.810.2.【答案】C【解析】中心对称绕中心转180与自身重合.3.【答案】D【解析】324(4)(2)(2)bbbbbbb.备用图CyxOQ图1CyxOA1A2Q10/174.【答案】C【解析】由俯视图可知有六个棱,再由主视图即左视图分析可知为六棱柱.5.【答案】D【解析
本文标题:2018北京西城初三一模数学试卷及答案
链接地址:https://www.777doc.com/doc-4772919 .html