您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 公司方案 > 16QAM的调制与解调
通信专业课程设计二太原科技大学课程设计(论文)设计(论文)题目:16QAM的调制解调姓名学号班级学院指导教师2012年1月4日太原科技大学课程设计(论文)任务书学院(直属系):电子信息工程学院时间:2012年12月19日学生姓名指导教师设计(论文)题目16QAM的调制与解调主要研究内容基于MatlabSimulink的16QAM的调制与解调研究方法MatlabSimulink主要技术指标(或研究目标)利用Simulink对16QAM调制系统进行仿真,得到了信号在加噪前后的星座图、眼图,而且在信噪比变化条件下,得到了16QAM系统的误码率。教研室意见教研室主任(专业负责人)签字:年月日16QAM的调制与解调I16QAM的调制与解调摘要随着无线通信频带日趋紧张,研究和设计自适应信道调制技术体制是建立宽带移动通信网络的关键技术之一。正交振幅调制技术(QAM)是一种功率和带宽相对高效的信道调制技术,因此在大容量数字微波通信系统、有线电视网络高速数据传输、卫星通信系统等领域得到了广泛应用。在移动通信中,随着微蜂窝和微微蜂窝的出现,使得信道传输特性发生了很大变化。过去在传统蜂窝系统中不能应用的正交振幅调制也引起了人们的重视。本文首先简单简绍了QAM调制解调系统和Simulink的工作原理。然后利用Simulink对16QAM调制系统进行仿真,不但得到了信号在加噪前后的星座图、眼图,而且在信噪比变化条件下,得到了16QAM系统的误码率。最后,在简单做了一个2DPSK系统仿真之后,将它与16QAM系统进行了比较,并得出了16QAM是一种相对优越的调制解调系统这一结论。关键词:QAM;SIMULINK;仿真;2DPSK;误码率16QAM的调制与解调II目录摘要.......................................................................I第1章绪论.................................................................11.1QAM简介.............................................................11.2SIMULINK............................................................11.3SIMULINK与通信仿真..................................................2第2章正交振幅调制........................................................32.1MQAM信号的星座图....................................................32.216QAM的调制解调原理.................................................52.316QAM的改进方案.....................................................6第3章16QAM调制解调系统实现与仿真........................................83.116QAM调制模块的模型建立与仿真.....................................103.1.1信号源........................................................103.1.2串并转换模块..................................................103.1.32/4电平转换模块.............................................113.1.4其余模块.....................................................133.1.5调制系统的实现................................................143.216QAM解调模块的模型建立与仿真......................................153.2.1相干解调......................................................153.2.24/2电平判决.................................................163.2.3并串转换......................................................18参考文献...................................................................2116QAM的调制与解调1第1章绪论1.1QAM简介在现代通信中,提高频谱利用率一直是人们关注的焦点之一。近年来,随着通信业务需求的迅速增长,寻找频谱利用率高的数字调制方式已成为数字通信系统设计、研究的主要目标之一。正交振幅调制QAM(QuadratureAmplitudeModulation)就是一种频谱利用率很高的调制方式,其在中、大容量数字微波通信系统、有线电视网络高速数据传输、卫星通信系统等领域得到了广泛应用。在移动通信中,随着微蜂窝和微微蜂窝的出现,使得信道传输特性发生了很大变化。过去在传统蜂窝系统中不能应用的正交振幅调制也引起人们的重视。QAM数字调制器作为DVB系统的前端设备,接收来自编码器、复用器、DVB网关、视频服务器等设备的TS流,进行RS编码、卷积编码和QAM数字调制,输出的射频信号可以直接在有线电视网上传送,同时也可根据需要选择中频输出。它以其灵活的配置和优越的性能指标,广泛的应用于数字有线电视传输领域和数字MMDS系统。作为国际上移动通信技术专家十分重视的一种信号调制方式之一,正交振幅调制(QAM)在移动通信中频谱利用率一直是人们关注的焦点之一,随着微蜂窝(Microcell)和微微蜂窝(Picocell)系统的出现,使得信道的传输特性发生了很大变化,接收机和发射机之间通常具有很强的支达分量,以往在蜂窝系统中不能应用的但频谱利用率很高的WAM已引起人们的重视,许多学者已对16QAM及其它变型的QAM在PCN中的应用进行了广泛深入地研究。1.2SIMULINKSimulink是MATLAB中的一种可视化仿真工具,是一种基于MATLAB的框图设计环境,是实现动态系统建模、仿真和分析的一个软件包,被广泛应用于线性系统、非线性系统、数字控制及数字信号处理的建模和仿真中。Simulink可以用连续采样时间、离散采样时间或两种混合的采样时间进行建模,它也支持多速率系统,也就是系统中的不同部分具有不同的采样速率。为了创建动态系统模型,Simulink提供了一个建立模型方块图的图形用户接口(GUI),这个创建过程只需单击和拖动鼠标操作就能完成,它提供了一种更快捷、直接明了的方式,而且用户可以立即看到系统的仿真结果。16QAM的调制与解调21.3SIMULINK与通信仿真仿真是衡量系统性能的工具,它通过仿真模型的仿真结果来推断原系统的性能,从而为新系统的建立或原系统的改造提供可靠的参考。仿真是科学研究和工程建设中不可缺少的方法。实际的通信系统是一个功能结构相当复杂的系统,对于这个系统作出的任何改变都可能影响到整个系统的性能和稳定。而Simulink作为Matlab提供的用于对动态系统进行建模、仿真和分析的工具包,提供了仿真所需的信源编码、纠错编码、信道、调制解调以及其它所用的全部库函数和模块。可见,不管对任何复杂的通信系统,用Simulink对其仿真都是一个不错的选择。16QAM的调制与解调3第2章正交振幅调制2.1MQAM信号的星座图MQAM信号表示式可写成)sincos(2)(twBtwATtSciciBMQAM(2.1)其中,Ai和Bi是振幅,表示为)12()12(jBjiAi(2.2)其中,i,j=1,2,…,L,当L=1时,是4QAM信号;当L=2时,是16QAM信号;当L=4时,是64QAM信号。选择正交的基本信号为twTttwTtcBcBsin2)(cos2)(21(2.3)在信号空间中MQAM信号点jiijBAS(i,j=1,2,…,L)(2.4)图2.1是MQAM的星座图,这是一种矩形的MQAM星座图。16QAM的调制与解调4图2.1MQAM信号星座图为了说明MQAM比MPSK具有更好的抗干扰能力,图2.2示出了16PSK和16QAM的星座图,这两个星座图表示的信号最大功率相等,相邻信号点的距离d1,d2分别为:2DPSKAAd39.016sin21,16QAMAMd47.01162122。结果表明,d2d1,大约超过1.64dB。合理地比较两星座图的最小空间距离应该是以平均功率相等为条件。可以证明,在平均功率相等条件下,16QAM的相邻信号距离超过16PSK约4.19dB。星座图中,两个信号点距离越大,在噪声干扰使信号图模糊的情况下,要求分开两个可能信号点越容易办到。因此16QAM方式抗噪声干扰能力优于16PSK。16QAM的调制与解调5图2.216QAM和16PSK的星座图MQAM的星座图除正方形外,还有圆形、三角形、矩形、六角形等。星座图的形式不同,信号点在空间距离也不同,误码性能也不同。MQAM和MPSK在相同信号点数时,功率谱相同,带宽均为基带信号带宽的2倍。2.216QAM的调制解调原理MQAM的调制解调框图如图2.3所示。在发送端调制器中串/并变换使得信息速率为Rb的输入二进制信号分成两个速率为Rb/2的二进制信号,2/L电平转换将每个速率为Rb/2的二进制信号变为速率为Rb/(2lbL)的电平信号,然后分别与两个正交载波相乘,再相加后即得MQAM信号。在接收端解调器中可以采用正交的相干解调方法。接受到的信号分两路进入两个正交的载波的相干解调器,再分别进入判决器形成L进制信号并输出二进制信号,最后经并/串变换后得到基带信号。16QAM的调制与解调6MQAM调制MQAM的解调图2.3MQAM调制解调框图2.316QAM的改进方案为了适应不同的需要,QAM有一些改进方案,如正交部分响应幅度调制(MQPR)、非线性正交振幅调制(NLA-QAM)、叠加式正交振幅调制(SQAM)等,还可以把QAM调制与信道编码技术结合起来设计,取得最优的可靠性和有效性,这种技术称为网格编码调制(TCM)。1.MQPR调制这是一种在多电平正交调制中,上下两支路的同相和正交基带信号都用部分响应信号(通常采用第Ⅰ类和第Ⅳ类部分响应)的调制方式。QPR与QAM相比,在相同信息传输速率条件下,严格带宽受限的QPR优于QAM。16QAM的调制与解调72.NLA-QAM调制QAM信号在进行传输之前,还要进行功率放大,而高效的功率放大是非线性的功率放大器,故而需考虑非线性对QAM的特性没有明显的影响措施,这就是NLA-QAM调制。NLA-QAM信号的产生方法与QAM不相同,但解调的方法与QAM完全一样。3.SQAM调制QAM调制信号在码元转换时刻有相位跳变的时刻,旁瓣分量比连续相位的调制信号要高。要改善QAM的频谱特性,应改善其基带波形以平滑码元转换时的相位变化,SQAM就是从这个角度提出的。SQAM的基本脉冲波形是由两个宽度为TB的升余弦波形与一个宽度为2TB的升余弦波形叠加而成。采用正交调制方式时,在下支路要延时TB/2,并且上下两支路放大倍数相差60dB。SQAM信号的功率谱与QAM相比,旁瓣分量得到有效地抑制。16QAM的调制与解调8第3章16QAM调制解调系统实现与仿真前面两章简单介绍了
本文标题:16QAM的调制与解调
链接地址:https://www.777doc.com/doc-4773268 .html