您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 基于粒子滤波的移动机器人SLAM算法
第40卷第1期2010年1月东南大学学报(自然科学版)JOURNALOFSOUTHEASTUNIVERSITY(NaturalScienceEdition)Vo.l40No.1Jan.2010doi:10.3969/.jissn.1001-0505.2010.01.022SLAM涂刚毅金世俊祝雪芬宋爱国(,210096):针对FastSLAM算法对传感器精度要求较高,不适用于方向性差的超声传感器问题,提出了一种基于超声概率栅格地图环境特征点提取匹配的移动机器人粒子滤波同时定位与地图创建(SLAM)算法.该算法可分解为机器人位姿估计和环境路标估计2个部分.基于蒙特卡罗定位原理利用粒子滤波算法对机器人运动轨迹进行估计;在建立全局超声概率栅格地图的基础上,利用概率栅格地图环境特征提取算法对环境路标坐标进行估计.实验证明,该算法较好地解决了超声测距传感器由于散射角大带来的特征点估计不准的问题,对环境路标和机器人轨迹的估计都比较准确.并对移动机器人累计误差进行了有效的补偿,减少了由于累积误差造成的移动机器人轨迹扭曲失真.:移动机器人;同步定位与地图创建;粒子滤波器;栅格地图:TP242:B:1001-0505(2010)01011706ParticlefilterSLAMmethodformobilerobotTuGangyiJinShijunZhuXuefenSongAiguo(SchoolofInstrumentScienceandEngineering,SoutheastUniversity,Nanjing210096,China)Abstract:FocusingonthelimitedapplicationofFastSLAMalgorithmduetoitshighaccuracyrequirmentforsensorandunfitnessforultrasonicsensorwithpoordirectivity,asimultaneouslocalizationandmapping(SLAM)algorithmutilizingparticlefilterisprovided,whichisbasedonultrasonicprobabilitygridmapfeaturepointsextractionandmatching.Thisalgorithmconsistsofrobotposeestimationandenvironmentlandmarkestimation.ParticlefiltersareappliedtoestimatetherobottrajectoryaccordingtoMonteCarlomethods.Basedonglobalultrasonicprobabilisticgridmap,theenvironmentlandmarkpositionisobservedbyenvironmentfeatureextractionalgorithm.Theeffectivenessoftheproposedalgorithmisvalidatedbyexperimentalresul.tTheestimationaccuracyoffeaturepointpositionaswellasenvironmentlandmarkareimproved.Thecumulativeerroroftherobotiscompensatedeffectivelyandthemobilerobottrajectorydistortionisreduced.Keywords:mobilerobo;tsimultaneouslocalizationandmapping;particlefilter;gridmap:20090617.:(1981),,;(),,,,jinsj@263.ne.t:(708045)!(06D031)(4022001004).:,,,.SLAM[J].:,2010,40(1):117122.[do:i10.3969/.jissn.1001-0505.2010.01.022].,.,,,,(simultaneouslocalizationandmapping,SLAM).SLAM.(particlefilter,PF),(sequentialMonteCarlomethods,SMC),,.,MontemerloRaoBlackwellized(RaoBlackwellizedparticlefilter,RBPF)FastSLAM[12].SLAM(extendedKalmanfilter,EKF)2.EKF,,.FastSLAM,.,,,.,[3][4],SLAM.,.4.∀.,.#..∃.PF,,,.%.,.1[56](MonteCarlolocalization,MCL)(Bayesianfilter,BF).,xk.2:zk={^k,^k}T,,^k,^k;uk={sk,!k}T,,sk,!k.zk,p(xkzk,uk)[7]:p(xkzk,uk)=∀p(zkxk)&∋p(xkuk,xk-1)p(xk-1zk-1,uk-1)dxk-1(1),∀;p(zkxk),;p(xkuk,xk-1)uk,xk,.2SLAM21SLAMSLAMxkskm,xk={sk,m}T,sk=(xk,yk,!k)xk,yk;m={m1,(,mN}N.PFSLAM:zk={z1,(,zk}uk={u1,(,uk},sk={s1,(,sk}p(skzk,uk,nk)p(sk,mzk,uk,nk).(1)[1]p(sk,mzk,uk,nk)=p(skzk,uk,nk)p(msk,zk,uk,nk)=p(skzk,uk,nk))Ni=1p(misk,zk,uk,nk)(2),nkk,nk={n1,n2,(,nk}.(2),SLAM2.22PF[7],PFSLAM.:s0Num.:.∀,Nums(i)0w(i)0s0={s(i)0,w(i)0}i=1,(,Num.#[89].k-1sk-1s(i)k-1p(s(i)kuk,s(i)k-1),ks(i)k.∃p(zks(i)k)s(i)k,m(i)k.118东南大学学报(自然科学版)第40卷%w(i)k,w(i)k=w(i)k-1p(zks(i)k)(3)∗w(i)k=w(i)k+Numi=1w(i)k(4),w(i)ksk[10],,,.−[2].p(misk,zk,uk,nk)mi.23sk,s(i)k.Sk,Sk={s(1)k,(,s(i)k}i=1,(,Num(5)s(i)k=(x(i)k,y(i)k,!(i)k)(6)sk=+Numi=1s(i)kw(i)k(7),i.,skuk.,s(i)kp(s(i)kuk,s(i)k-1).,NskNsk.,,Nx,Ny,N!.p(s(i)kuk,s(i)k-1):s(i)k=x(i)k-1y(i)k-1!(i)k-1+(sk+Nsk)cos!k(sk+Nsk)sin!k!k+N!k+NxNyN!(8)241,1^k^k=(x^L-x/k)2+(y^L-y/k)2arctany^L-y/kx^L-x/k-!k(9),(x^L,y^L);(x/k,y/k).,s(i)kp(zks(i)k).(x/(i)k,y/(i)k)(x(i)k,y(i)k)L,p(zks(i)k)z(i)L,k=x^(i)L,ky^(i)L,k=x/(i)k+^kcos(!(i)k+^k)y/(i)k+^ksin(!(i)k+^k)=x(i)k+Lcos!(i)k+^kcos(!(i)k+^k)y(i)k+Lsin!(i)k+^ksin(!(i)k+^k)(10),z(i)L,ks(i)k.25,,..[2,11].,R,;R.,..mi:mi=+Cxy.#(P(OCxy)PCxy)+Cxy.#P(OCxy)(11),#;PCxyCxy;P(OCxy).zk=(^k,^k),m.,(nearestneighbor,NN),.,,f(s(i)k,m)=minmi.m{d(mi,z(i)L,k)}(12),d(mi,z(i)L,k)s(i)kz(i)L,kmi;f(s(i)k,m)s(i)km.Th,f(s(i)k,m)Th,,.119第1期涂刚毅,等:基于粒子滤波的移动机器人SLAM算法26z(i)L,kmi,w(i)k,(2)mi((i)k,(i)k).zk={k,k}T.k=k-(i)k,k=k-(i)k.k!k,k0!k.!k,k~N(M!,∃2!).,k~N(M,∃2).k,k,p(zks(i)k)[12]:p(zks(i)k)=GM!,∃2!(k)GM,∃2(k)(13),G.(13)(3)zk.3!,SLAM.,8m18m.,,SLAM.!,.,,180211252,,.,,.2,,[2].2,1.1cm1(-117.5,44.7)(-115,48)4.142(11.3,219.5)(13,225)5.753(88,96)(91,101)5.834(163.2,288.4)(165,293)4.935(174,-70.6)(180,-73)6.466(268.6,122.3)(271,118)4.92,.3.,!3∃.3,.,,.120东南大学学报(自然科学版)第40卷,,,,,4.(a)X(b)Y(c)46,5(a)(b).(a)(b)55(a),,,.5(b)PFSLAM.,.,.6,.,.(a)X(b)Y(c)64,PFSLAM,,,.SLAM.(References)[1]MontemerloM,ThrunS.SimultaneouslocalizationandmappingwithunknowndataassociationusingFastSLAM[C]3ProcIEEEIntConfRoboticsandAutomation.Taipe,iChina:IEEEPress,2003:19851991.121第1期涂刚毅,等:基于粒子滤波的移动机器人SLAM算法[2],.FastSLAM2.0[J].,2009,31(1):2532.ZhouWu,ZhaoChunxia.AFastSLAM2.0algorithmbasedongeneticalgorithm[J].Robot,2009,31(1):2532.(inChinese)[3]PagacD,NebotEM,DurrantWhyteH.Anevidentialapproachtomapbuildingforautonomousvehicles[J].IEEETransactionsonRoboticsandAutomation,1998,14(4):623629.[4],,,.SLAM[J].,2007,19(16):37153718,3723.JuChunchun,HeBo,LiuBaolong,eta.lSimulationresearchonsimultaneousrobotlocalizationandmappingbasedonparticlefilter[J].JournalofSystemSimulation,2007,19(16):37153718,3723.(inChinese)[5],,.MonteCarlo[J].:,2007,37(1):4044.FangFang,MaXudong,DaiXianzhong.NewMonteCarloalgorithmformobilerobotselflocalization[J].JournalofSoutheastUniversity:NaturalScienceEdition,2007,37(1):4044.(inChinese)[6],,.MonteCarlo[J].,2008,30(3):210216.LiangZhiwe,iMaXudong,DaiXianzhong.An
本文标题:基于粒子滤波的移动机器人SLAM算法
链接地址:https://www.777doc.com/doc-4788725 .html