您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 2011高考数学总复习课件10.1--分类加法计数原理与分步乘法计数原理
第十编计数原理§10.1分类加法计数原理与分步乘法计数原理1.分类加法计数原理完成一件事有n类不同的方案,在第一类方案中有m1种不同的方法,在第二类方案中有m2种不同的方法,……,在第n类方案中有mn种不同的方法,则完成这件事情,共有N=种不同的方法.m1+m2+…+mn基础知识自主学习2.分步乘法计数原理完成一件事情需要分成n个不同的步骤,完成第一步有m1种不同的方法,完成第二步有m2种不同的方法,……,完成第n步有mn种不同的方法,那么完成这件事情共有N=种不同的方法.m1×m2×…×mn3.分类加法计数原理与分步乘法计数原理,都涉及的不同方法的种数.它们的区别在于:分类加法计数原理与有关,各种方法,用其中的任一种方法都可以完成这件事;分步乘法计数原理与有关,各个步骤,只有各个步骤都完成了,这件事才算完成.完成一件事情分类相互独立分步相互依存基础自测1.从3名女同学和2名男同学中选1人主持本班的某次主题班会,则不同的选法种数为()A.6B.5C.3D.2解析“完成这件事”即选出一人作主持人,可分选女主持人和男主持人两类进行,分别有3种选法和2种选法,所以共有3+2=5种不同的选法.B2.设集合A={1,2,3,4},m,n∈A,则方程+=1表示焦点位于x轴上的椭圆有()A.6个B.8个C.12个D.16个解析因为椭圆的焦点在x轴上,所以当m=4时,n=1,2,3;当m=3时,n=1,2;当m=2时,n=1,即所求的椭圆共有3+2+1=6个,故选A.mx2ny2A3.有不同颜色的四件上衣与不同颜色的三件长裤,如果一条长裤与一件上衣配成一套,则不同的配法种数()A.7B.64C.12D.81解析由分步乘法计数原理,一条长裤与一件上衣配成一套,分两步,第一步选上衣有4种选法,第二步选长裤有3种选法,所以,有4×3=12种选法,故选C.C4.有一项活动需在3名老师,8名男同学和5名女同学中选人参加,(1)若只需一人参加,有多少种不同的选法?(2)若需一名老师,一名学生参加,有多少种不同的选法?(3)若只需老师、男同学、女同学各一人参加,有多少种不同的选法?1639120题型一分类加法计数原理【例1】在所有的两位数中,个位数字小于十位数字的两位数共有多少个?采用列举分类,先确定个位数字,再考虑十位数字的所有可能.然后用分类加法计数原理.解方法一一个两位数由十位数字和个位数字构成,考虑一个满足条件的两位数,可先确定个位数字后再考虑十位数字有几种可能.一个两位数的个位数字可以是0,1,2,3,4,5,6,7,8,9.把这样的两位数分成10类.思维启迪题型分类深度剖析(1)当个位数字为0时,十位数字可以是1,2,3,4,5,6,7,8,9,有9个满足条件的两位数;(2)当个位数字为1时,十位数字可以是2,3,4,5,6,7,8,9,有8个满足条件的两位数;(3)当个位数字为2时,十位数字可以是3,4,5,6,7,8,9,有7个满足条件的两位数;以此类推,当个位数字分别是3,4,5,6,7,8,9时,满足条件的两位数分别有6,5,4,3,2,1,0个.由分类加法计数原理,满足条件的两位数的个数为9+8+7+6+5+4+3+2+1+0=45个.方法二考虑有0与无0两类有0有9个无0则有3629C所以共9+36=45个题型二分步乘法计数原理【例2】已知集合M={-3,-2,-1,0,1,2},P(a,b)表示平面上的点(a,b∈M),问:(1)P可表示平面上多少个不同的点?(2)P可表示平面上多少个第二象限的点?(3)P可表示多少个不在直线y=x上的点?完成“确定点P”这件事需依次确定横、纵坐标,应用分步乘法计数原理.思维启迪解(1)确定平面上的点P(a,b)可分两步完成:第一步确定a的值,共有6种确定方法;第二步确定b的值,也有6种确定方法.根据分步乘法计数原理,得到平面上的点数是6×6=36.(2)确定第二象限的点,可分两步完成:第一步确定a,由于a0,所以有3种确定方法;第二步确定b,由于b0,所以有2种确定方法.由分步乘法计数原理,得到第二象限点的个数是3×2=6.(3)点P(a,b)在直线y=x上的充要条件是a=b.因此a和b必须在集合M中取同一元素,共有6种取法,即在直线y=x上的点有6个.由(1)得不在直线y=x上的点共有36-6=30个.利用分步乘法计数原理解决问题:①要按事件发生的过程合理分步,即分步是有先后顺序的;②各步中的方法互相依存,缺一不可,只有各个步骤都完成了才算完成这件事.知能迁移2一个口袋里有5封信,另一个口袋里有4封信,各封信内容均不相同.(1)从两个口袋里各取一封信,有多少种不同的取法?(2)把这两个口袋里的9封信,分别投入4个邮筒,有多少种不同的放法?探究提高2049题型三两个计数原理的综合应用【例3】(12分)用0,1,2,3,4,5可以组成多少个无重复数字的比2000大的四位偶数.先根据条件把“比2000大的四位偶数”分类→选取千位上的数字→选取百位上的数字→选取十位上的数字解完成这件事有3类方法:第一类是用0做结尾的比2000大的4位偶数,它可以分三步去完成:第一步,选取千位上的数字,只有2,3,4,5可以选择,有4种选法;第二步,选取百位上的数字,除0和千位上已选定的数字以外,还有4个数字可供选择,有4种选法;第三步,选取十位上的数字,还有3种选法.依据分步乘法计数原理,这类数的个数有4×4×3=48个;4分第二类是用2做结尾的比2000大的4位偶数,它可以分三步去完成:第一步,选取千位上的数字,除去2,1,0,只有3个数字可以选择,有3种选法;第二步,选取百位上的数字,在去掉已经确定的首尾两数字之后,还有4个数字可供选择,有4种选法;第三步,选取十位上的数字,还有3种选法.依据分步乘法计数原理,这类数的个数有3×4×3=36个;8分第三类是用4做结尾的比2000大的4位偶数,其步骤同第二类.10分对以上三类结论用分类加法计数原理,可得所求无重复数字的比2000大的四位偶数有4×4×3+3×4×3+3×4×3=120个.12分在解决实际问题的过程中,并不一定是单一的分类或分步,而是可能同时应用两个计数原理,即分类时,每类的方法可能要运用分步完成,而分步时,每步的方法数可能会采取分类的思想求.另外,具体问题是先分类后分步,还是先分步后分类,应视问题的特点而定.解题时经常是两个原理交叉在一起使用,分类的关键在于要做到“不重不漏”,分步的关键在于要正确设计分步的程序,即合理分类,准确分步.探究提高知能迁移3如图所示,将一个四棱锥的每一个顶点染上一种颜色,并使同一条棱上的两端异色,如果只有5种颜色可供使用,求不同的染色方法总数.解方法一可分为两大步进行,先将四棱锥一侧面三顶点染色,然后再分类考虑另外两顶点的染色数,用分步乘法原理即可得出结论.由题设,四棱锥S—ABCD的顶点S、A、B所染的颜色互不相同,它们共有5×4×3=60种染色方法.当S、A、B染好时,不妨设其颜色分别为1、2、3,若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法;若C染5,则D可染3或4,有2种染法.可见,当S、A、B已染好时,C、D还有7种染法,故不同的染色方法有60×7=420种.方法二以S、A、B、C、D顺序分步染色.第一步,S点染色,有5种方法;第二步,A点染色,与S在同一条棱上,有4种方法;第三步,B点染色,与S、A分别在同一条棱上,有3种方法;第四步,C点染色,也有3种方法,但考虑到D点与S、A、C相邻,需要针对A与C是否同色进行分类,当A与C同色时,D点有3种染色方法;当A与C不同色时,因为C与S、B也不同色,所以C点有2种染色方法,D点也有2种染色方法.由分步乘法、分类加法计数原理得不同的染色方法共有5×4×3×(1×3+2×2)=420种.方法三按所用颜色种数分类.第一类,5种颜色全用,共有种不同的方法;第二类,只用4种颜色,则必有某两个顶点同色(A与C,或B与D),共有2×种不同的方法;第三类,只用3种颜色,则A与C、B与D必定同色,共有种不同的方法.由分类加法计数原理,得不同的染色方法总数为=420种.55A45A35A354555AA2A方法与技巧1.分类加法和分步乘法计数原理,都是关于做一件事的不同方法的种数的问题,区别在于:分类加法计数原理针对“分类”问题,其中各种方法相互独立,用其中任何一种方法都可以做完这件事;分步乘法计数原理针对“分步”问题,各个步骤相互依存,只有各个步骤都完成了才算完成这件事.2.混合问题一般是先分类再分步.3.分类时标准要明确,做到不重复不遗漏.4.要恰当画出示意图或树状图,使问题的分析更直观、清楚,便于探索规律.思想方法感悟提高失误与防范应用两种原理解题:(1)分清要完成的事情是什么?(2)分清完成该事情是分类完成还是分步完成?“类”间互相独立,“步”间互相联系;(3)有无特殊条件的限制;(4)检验是否有重漏.一、选择题1.从集合{1,2,3,…,10}中任意选出三个不同的数,使这三个数成等比数列,这样的等比数列的个数为()A.3B.4C.6D.8解析当公比为2时,等比数列可为1、2、4,2、4、8.当公比为3时,等比数列可为1、3、9.当公比为时,等比数列可为4、6、9.同时,4、2、1,8、4、2,9、3、1和9、6、4也是等比数列,共8个.D23定时检测2.如图所示的阴影部分由方格纸上3个小方格组成,我们称这样的图案为L型(每次旋转90°仍为L型图案),那么在由4×5个小方格组成的方格纸上可以画出不同位置的L型图案的个数是()A.16B.32C.48D.64解析每四个小方格(2×2型)中有“L”型图案4个,共有2×2型小方格12个,所以共有“L”型图案4×12=48个.C3.(2008·全国Ⅰ文,12)将1,2,3填入3×3的方格中,要求每行、每列都没有重复数字,右面是一种填法,则不同的填写方法共有()A.6种B.12种C.24种D.48种解析由于3×3方格中,每行、每列均没有重复数字,因此可从中间斜对角线填起.如图中的△,当△全为1时,有2种(即第一行第二列为2或3,当第二列填2时,第三列只能填3,当第一行填完后,其他行的数字便可确定),当△全为2或3时,分别有2种,共有6种;当△分别为1,2,3时,也共有6种.共12种.B4.如图所示,用五种不同的颜色分别给A、B、C、D四个区域涂色,相邻区域必须涂不同颜色,若允许同一种颜色多次使用,则不同的涂色方法共有()A.180种B.120种C.96种D.60种解析按区域分四步:第一步A区域有5种颜色可选;第二步B区域有4种颜色可选;第三步C区域有3种颜色可选;第四步由于D区域可以重复使用区域A中已有过的颜色,故也有3种颜色可选用.由分步乘法计数原理,共有5×4×3×3=180(种)涂色方法.A5.有4位教师在同一年级的4个班中各教一个班的数学,在数学检测时要求每位教师不能在本班监考,则监考的方法有()A.8种B.9种C.10种D.11种解析方法一设四位监考教师分别为A、B、C、D,所教班分别为a、b、c、d,假设A监考b,则余下三人监考剩下的三个班,共有3种不同方法,同理A监考c、d时,也分别有3种不同方法,由分类加法计数原理共有3+3+3=9种.B方法二班级按a、b、c、d的顺序依次排列,为避免重复或遗漏现象,教师的监考顺序可用“树形图”表示如下:∴共有9种不同的监考方法.二、填空题6.(2008·浙江,理16文17)用1,2,3,4,5,6组成六位数(没有重复数字),要求任何相邻两个数字的奇偶性不同,且1和2相邻,这样的六位数的个数是(用数字作答).解析可分三步来做这件事:第一步:先将3、5排列,共有种排法;第二步:再将4、6插空排列,共有2种排法;第三步:将1、2放到3、5、4、6形成的空中,共有种排法.由分步计数原理得共有·2·=40个.4022A22A22A22A15C15C7.“渐升数”是指每个数字比它左边的数字大的正整数(如1458),若把四位“渐升数”按
本文标题:2011高考数学总复习课件10.1--分类加法计数原理与分步乘法计数原理
链接地址:https://www.777doc.com/doc-4789231 .html