您好,欢迎访问三七文档
当前位置:首页 > 医学/心理学 > 医学试题/课件 > 勾股定理的逆定理-(提高)知识讲解
勾股定理的逆定理(提高)【学习目标】1.掌握勾股定理的逆定理及其应用.理解原命题与其逆命题,原定理与其逆定理的概念及它们之间的关系.2.能利用勾股定理的逆定理,由三边之长判断一个三角形是否是直角三角形.3.能够理解勾股定理及逆定理的区别与联系,掌握它们的应用范围.【要点梳理】【高清课堂勾股定理逆定理知识要点】要点一、勾股定理的逆定理如果三角形的三条边长abc,,,满足222abc,那么这个三角形是直角三角形.要点诠释:(1)勾股定理的逆定理的作用是判定某一个三角形是否是直角三角形.(2)勾股定理的逆定理是把“数”转为“形”,是通过计算来判定一个三角形是否为直角三角形.要点二、如何判定一个三角形是否是直角三角形(1)首先确定最大边(如c).(2)验证2c与22ab是否具有相等关系.若222cab,则△ABC是∠C=90°的直角三角形;若222cab,则△ABC不是直角三角形.要点诠释:当222abc时,此三角形为钝角三角形;当222abc时,此三角形为锐角三角形,其中c为三角形的最大边.要点三、互逆命题如果两个命题的题设与结论正好相反,则称它们为互逆命题.如果把其中一个叫原命题,则另一个叫做它的逆命题.要点诠释:原命题正确,逆命题未必正确;原命题不正确,其逆命题也不一定错误;正确的命题我们称为真命题,错误的命题我们称它为假命题.要点四、勾股数满足不定方程222xyz的三个正整数,称为勾股数(又称为高数或毕达哥拉斯数),显然,以xyz、、为三边长的三角形一定是直角三角形.熟悉下列勾股数,对解题会很有帮助:①3、4、5;②5、12、13;③8、15、17;④7、24、25;⑤9、40、41……如果abc、、是勾股数,当t为正整数时,以atbtct、、为三角形的三边长,此三角形必为直角三角形.要点诠释:(1)22121nnn,,(1,nn是自然数)是直角三角形的三条边长;(2)2222,21,221nnnnn(n是自然数)是直角三角形的三条边长;(3)2222,,2mnmnmn(,mnmn、是自然数)是直角三角形的三条边长;【典型例题】类型一、原命题与逆命题1、写出下列命题的逆命题,并判断其真假:(1)同位角相等,两直线平行;(2)如果2x,那么24x;(3)等腰三角形两底角相等;(4)全等三角形的对应角相等.(5)对顶角相等.(6)线段垂直平分线上的点到线段的两个端点的距离相等.【思路点拨】写一个命题的逆命题的关键是分清它的题设和结论,然后将其交换位置,判断一个命题为真命题要经过证明,是假命题只需举出反例说明即可.【答案与解析】解:(1)逆命题是:两直线平行,同位角相等,它是真命题.(2)逆命题是:如果24x,那么2x,它是假命题.(3)逆命题是:有两个角相等的三角形是等腰三角形,它是真命题.(4)逆命题是:对应角相等的两个三角形全等,它是假命题.(5)逆命题是:如果两个角相等,那么这两个角是对顶角,它是假命题.(6)逆命题是:到线段两个端点距离相等的点一定在线段的垂直平分线上,它是真命题.【总结升华】写一个命题的逆命题的关键是分清它的题设和结论,然后将题设和结论交换位置,写出它的逆命题,可以借助“如果……那么”分清题设和结论.每一个命题都有逆命题,其中有真命题,也有假命题.举一反三:【变式】下列定理中,有逆定理的个数是()①有两边相等的三角形是等腰三角形;②若三角形三边abc,,满足222abc,则该三角形是直角三角形;③全等三角形对应角相等;④若ab,则22ab.A.1个B.2个C.3个D.4个【答案】B;提示:①的逆命题是:等腰三角形有两边相等,是真命题;②的逆命题是:若三角形是直角三角形,则三边满足222abc(c为斜边);③但对应角相等的两个三角形不一定全等;④若22ab,a与b不一定相等,所以③、④的逆命题是假命题,不可能是定理.类型二、勾股定理逆定理的应用2、如图所示,四边形ABCD中,AB⊥AD,AB=2,AD=23,CD=3,BC=5,求∠ADC的度数.【答案与解析】解:∵AB⊥AD,∴∠A=90°,在Rt△ABD中,222222(23)16BDABAD.∴BD=4,∴12ABBD,可知∠ADB=30°,在△BDC中,22216325BDCD,22525BC,∴222BDCDBC,∴∠BDC=90°,∴∠ADC=∠ADB+∠BDC=30°+90°=120°.【总结升华】利用勾股定理的逆定理时,条件是三角形的三边长,结论是直角三角形,即由边的条件得到角的结论,所以在几何题中需要进行边角的转换时要联想勾股定理的逆定理.举一反三:【高清课堂勾股定理逆定理例4】【变式1】△ABC三边abc,,满足222338102426abcabc,则△ABC是()A.锐角三角形B.钝角三角形C.等腰三角形D.直角三角形【答案】D;提示:由题意222512130abc,51213abc,,,因为222abc,所以△ABC为直角三角形.【变式2】如图所示,在△ABC中,已知∠ACB=90°,AC=BC,P是△ABC内一点,且PA=3,PB=1,PC=CD=2,CD⊥CP,求∠BPC的度数.【答案】解:连接BD.∵CD⊥CP,且CD=CP=2,∴△CPD为等腰直角三角形,即∠CPD=45°.∵∠ACP+∠BCP=∠BCP+∠BCD=90°,∴∠ACP=∠BCD.∵CA=CB,∴△CAP≌△CBD(SAS),∴DB=PA=3.在Rt△CPD中,22222228DPCPCD.又∵PB=1,则21PB.∵29DB,∴222819DBDPPB,∴△DPB为直角三角形,且∠DPB=90°,∴∠CPB=∠CPD+∠DPB=45°+90°=135°.3、(2015春•信丰县校级期中)如图,已知在四边形ABCD中,AB=20cm,BC=15cm,CD=7cm,AD=24cm,∠ABC=90°.猜想∠A与∠C关系并加以证明.【思路点拨】连接AC,然后根据勾股定理求出AC的值,然后根据勾股定理的逆定理判断△ADC为Rt△,然后根据四边形的内角和定理即可得到∠A与∠C关系.【答案与解析】证明:猜想∠A与∠C关系为:∠A+∠C=180°.连结AC,∵∠ABC=90°,∴在Rt△ABC中,由勾股定理得:AC==25cm,∵AD2+DC2=625=252=AC2,∴△ADC是直角三角形,且∠D=90°,∵∠DAB+∠B+∠BCD+∠D=360°,∴∠DAB+∠BCD=180°,即∠A+∠C=180°.【总结升华】此题考查了勾股定理及勾股定理的逆定理,解题的关键是:根据勾股定理的逆定理判断△ADC是直角三角形.举一反三:【变式】(2015秋•埇桥区校级月考)下列各组数中,全是勾股数的一组是()A.2,3,4;6,8,10;5,12,13B.3,4,5;10,24,26;7,24,25C.,,;8,15,17;30,40,50D.0.4,1.2,1.3;6,8,10;9,40,41【答案】B;解:A、22+32≠42,不是勾股数,此选项错误;B、32+42=52,102+242=262,72+242=252,此选项正确;C、,,不是勾股数,此选项错误;D、0.4,1.2,1.3不是勾股数,此选项错误;故选B.类型三、勾股定理逆定理的实际应用4、如图所示,MN以左为我国领海,以右为公海,上午9时50分我国缉私艇A发现在其正东方向有一走私艇C并以每小时13海里的速度偷偷向我国领海开来,便立即通知距其5海里,并在MN线上巡逻的缉私艇B密切注意,并告知A和C两艇的距离是13海里,缉私艇B测得C与其距离为12海里,若走私艇C的速度不变,最早在什么时间进入我国海域?【答案与解析】解:∵22222251216913ABBCAC,∴△ABC为直角三角形.∴∠ABC=90°.又BD⊥AC,可设CD=x,∴22222212,(13)5,xBDxBD①②①-②得2216926119xxx,解得14413x.∴1441441313169≈0.85(h)=51(分).所以走私艇最早在10时41分进入我国领海.【总结升华】(1)本题用勾股定理作相等关系列方程解决问题,(2)用勾股定理的逆定理判定直角三角形,为勾股定理的运用提供了条件.
本文标题:勾股定理的逆定理-(提高)知识讲解
链接地址:https://www.777doc.com/doc-4794640 .html