您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 多指标综合评价方法及权重系数的选择
多指标综合评价方法及权重系数的选择来源:中国论文下载中心[09-02-0110:17:00]编辑:studa20作者:王晖,陈丽,陈垦,薛漫清,梁庆【摘要】由于计算机的发展及一些相关领域的不断深入研究,综合评价方法得到了不断的发展和改进。而指标权重系数的确定方法作为综合评价中的重中之重,近几年来也取得了一些新的进展。本文对多指标评价方法和权重系数的选择进行概括介绍。【关键词】多指标综合评价;评价方法;权重系数;选择基金项目:广东药学院引进人才科研启动基金资助项目(2005ZYX12)、广州市科技计划项目(2007J1-C0281)、广东省科技计划项目(2007A060305006)综合评价是利用数学方法(包括数理统计方法)对一个复杂系统的多个指标信息进行加工和提炼,以求得其优劣等级的一种评价方法。本文就近年来国内外有关多指标综合评价及权重系数选择的方法进行综述,以期为药理学多指标的研究提供一些方法学的资料。1多指标综合评价方法1.1层次分析加权法(AHP法)[1]AHP法是将评价目标分为若干层次和若干指标,依照不同权重进行综合评价的方法。根据分析系统中各因素之间的关系,确定层次结构,建立目标树图→建立两两比较的判断矩阵→确定相对权重→计算子目标权重→检验权重的一致性→计算各指标的组合权重→计算综合指数和排序。该法通过建立目标树,可计算出合理的组合权重,最终得出综合指数,使评价直观可靠。采用三标度(-1,0,1)矩阵的方法对常规的层次分析加权法进行改进,通过相应两两指标的比较,建立比较矩阵,计算最优传递矩阵,确定一致矩阵(即判断矩阵)。该方法自然满足一致性要求,不需要进行一致性检验,与其它标度相比具有良好的判断传递性和标度值的合理性;其所需判断信息简单、直观,作出的判断精确,有利于决策者在两两比较判断中提高准确性[2]。1.2相对差距和法[3]设有m项被评价对象,有n个评价指标,则评价对象的指标数据库为Kj=(K1j,K2j,……,Knj),j=1,2,……,m。设最优数据为K0=(K1、K2、……Kn)。最优单位K0中各数据的确定如下:高优指标,取所有m个单位中该项评价指标最大者;低优指标,取所有m个单位中该项评价指标最小者。各单位与最优单位的加权相对差距和为:D=∑nj=1WiKi-Kij2Mi式中Wi为第i项指标的权系数,Mi为所有单位的第i项指标数值的中位数。结果按D值大小进行排序,D值越小,该单位越接近最优单位。该方法直观、易懂、计算简便,可以直接用原始数据进行计算,避免因其它运算而引起的信息损失。该法考虑了各评价对象在全体评价对象中的位置,避免了各被评价对象之间因差距较小,不易排序的困难。1.3主成分分析法该法是将多个指标化为少数几个综合指标,而保持原指标大量信息的一种统计方法。其计算步骤简述如下[4]:对原始数据进行标准化变换并求相关系数矩阵Rm×n→求出R的特征根λi及相应的标准正交化特征向量ai→计算特征根λi的信息贡献率,确定主成分的个数→将经过标准化后的样本指标值代入主成分,计算每个样本的主成分得分。应用本法时,当指标数越多,且各指标间相关程度越密切,即相应的主成分个数越少,本法越优越;对于定性指标,应先进行定量化;当指标数较少时,可适当增加主成分个数,以提高分析精度。采用主成分分析法进行综合评价有全面性、可比性、合理性、可行性等优点,但是也存在一些问题:如果对多个主成分进行加权综合会降低评价函数区分的有效度,且该方法易受指标间的信息重叠的影响。潘石柱等[5]则提出一种将GHA(generalizedhebbianalgorithm)学习规则应用到核主成分分析的新方法,它结合了核主成分分析和GHA学习规则的优点,既利用了核主成分分析的方法方便地提取数据的非线性特征,又避免了在大样本数据的情况下运算复杂和存储空间大的问题。1.4TOPSIS法[6]该法是基于归一化后的原始数据矩阵,找出有限方案中的最优方案和最劣方案,然后获得某一方案与最优方案和最劣方案间的距离(用差的平方和的平方根值表示),从而得出该方案与最优方案的接近程度,并以此作为评价各方案优劣的依据。其具体方法和步骤如下:评价指标的确定→将指标进行同趋势变换,建立矩阵→归一化后的数据矩阵→确定最优值和最劣值,构成最优值和最劣值向量→计算各评价单元指标与最优值的相对接近程度→排序。指标进行同趋势的变换的方法:根据专业知识,使各指标转化为“高优”,转化方法有倒数法(多用于绝对数指标)和差值法(多用于相对数指标)。但是该法的权重受叠代法的影响,同时由于其对中性指标的转化尚无确定的方法,致使综合评价的最终结果不是很准确[7]。侯志东等[8]提出的基于Hausdauff度量的模糊Topsis方法,首先通过模糊极大集和模糊极小集来确定模糊多属性决策问题的理想解与负理想解,再由Hausdauff度量获得不同备选方案到理想解与负理想解的距离及其贴近度,根据贴近度指标对方案进行优劣排序。该方法思路清晰,计算简单,操作比较容易。刘继斌等[9]在Topsis法中引入指标权重,用属性AHM赋权法求指标权重,再用Topsis法进行综合评价。结果显示基于属性AHM的Topsis综合评价既考虑了参评指标的重要性,又体现了Topsis法能充分利用数据资料的优点,原理简明,结果准确,使用方便。1.5RSR值综合评价法(秩和比法)[6]把各指标值排序(排“秩”R),仅以“秩”R来计算。当指标“高优”时,按“升序”排序,最小值为1,即R值最高者最优;当指标“低优”时,按“降序”排序,最大值为1,即R值最低者最优。当各指标的“秩”相加时,累加和最大者则最优。该方法以实际资料作为计算基础,较为客观,它在算法上是将原始数据转化为序值,虽计算简单,但未充分利用资料的原始信息。当各指标的“秩”相加时,“秩和”(ΣR)最大者则为优;当m为指标数,n为参加排序的单位数,则按下式计算RSR值:RSR=ΣR/(mn)。1.6全概率评分法[10]设Bi为第i号试验,Aj为第j个指标,i=1,2,……,k,且A1、A2……、An互不相容,又设各指标的重要程度之比为A1:A2……:Ak=m1:m2……:mk,则P(Aj)=mj/N,j=1,2,……k以Xij表示第j个指标下的第i个测定值,以Sj表示第j个指标下各次试验结果的和,即Sj=Σni=1Xiji=1,2……n;j=1,2……k则P(Bi/Aj)=Xij/Sj全概率公式为:P(Bikj=1)=ΣP(Aj)P(Bi/Aj),i=1,2……n;j=1,2……k根据专业知识,公式分越大或越小越优。1.7人工神经网络[11]神经网络是建立以权重描述变量与目标之间特殊的非线性关系模型,对事物的判断分析必须经过一个学习或训练过程,类似于人脑认识一个新事物必须有一个学习过程一样,神经网络通过一定的算法进行训练,将反馈传播(BP)算法引入神经网络中,很好地实现了多层神经网络的设想。与传统的计算机方法相比,具有大规模信息处理、分布式联想存储、自适应学习及自组织的特点;作为一个高度的非线性动态处理系统,既可处理线性问题,又可处理非线性问题,且具有很强的容错能力。在求解问题时,对实际问题的结构没有要求,不必对变量之间的关系作出任何假设,只需利用在学习阶段所获得的知识(分布式存储于网络的内部),对输入因子进行处理,就可得到结果。这种处理方式更符合客观实际,因而得到的结果可靠性更大。1.8简易公式评分法[12]化多指标为单指标→确定权重系数→按公式计算分数。简易综合公式:dij=b1aij/s1+b2bij/s2+b3cij/s3式中aij、bij、cij分别为第i项的第j个指标,s1、s2和s3分别为样本的标准差,b1、b2和b3分别为权重系数。1.9蒙特卡罗模拟综合评价法[13]利用蒙特卡罗模拟技术将原序数关系的目标属性转化为一系列的目标属性向量。对于每一权重向量,利用加权法对方案(评价对象)进行排序,得到一系列排序向量,再统计每个方案排在各个排序位次上的次数,进而求出相应比例。一般步骤如下:根据各指标属性,进行数据生成(生成的数据应满足无量纲化、标准化和测度统一化)→产生随机重向量→计算加权值→排序向量。1.10模糊综合评判法[14]应用模糊关系合成的特性,从多个指标对被评价事物隶属等级状况进行综合性评判的一种方法,它把被评价事物的变化区间作出划分,又对事物属于各个等级的程度作出分析,使得描述更加深入和客观。一般步骤如下:确定评价事物的因素论域→选定评语等级论域→建立模糊关系矩阵→确定评价因素权向量→选择合成算子→得到模糊评判结果向量→进一步分析处理。该法的优点是:数学模型简单,容易掌握,对多因素多层次的复杂问题评判效果比较好。在实际应用中,采用模糊综合评判法能够得到全面和合理的评判结果[15]。1.11灰关联聚类法[16]该法把灰关联聚类分析和聚类思想方法进行融汇、扩充,将关联度的数值演化成评估对象的亲和度而用于聚类分析。设待分析评价系统Si(i=1,2,……,m),特征参量(指标)序列为Xi,Xi=(Xi1,Xi2,……,Xin)又有参考特征参量(指标)序列X0X0=(X01,X02,……,X0m)参考序列的确定:对于指标越大越好的指标,则:X0j=max(Xij)(j=1,2,……,n)对于指标越小越好的指标,则:X0j=mini∈I(Xij)该法的步骤:聚类基础的构成→灰色相似矩阵的建立→聚类分析该法对原始数据进行统一测度和同一化处理,消除了不同指标量纲的影响,能定量反映不同评价单元的优劣程度,直观可靠,权的取值在0与1之间,该值越接近1,反映所评价单元越接近最优水平的程度越高;反之,该值越接近0,反映所评价单元越接近最劣水平的程度越高。本法既适合大样本,也适合小样本的评价系统。1.12因子分析法(FA)[17,18]因子分析法(factoranalysis)是由心理学家CharlesSpearman首先提出的。目前,该方法在自然科学领域中的应用越来越广泛,它的基本思想是通过对原始指标相关矩阵内部结构的研究,找出能控制所有指标少数几个不可观测的公因子(彼此之间不相关),每个指标可以近似表示成公因子的线性组合,以较少的公因子来代替多个指标从而达到简化分析的目的。同时根据不同因子以及进一步旋转,可以对指标进行较为科学和清晰的分类。根据变量间的相关性大小,把变量分组,使得同组内变量之间的相关性较高,但不同组内变量之间的相关性较低。每组变量代表一个基本结构,这个基本结构称为公共因子。设有P维随机向量X=X(X1,X2,……,Xp)′,其均值向量为μ=(μ1,μ2,…μp)′,协方差矩阵为∑=(σij)p×p,可以设想这个P指标主要受到m(m≤p)个公共因子F1,F2,…,Fm的影响,且Xi是F1,F2,…,Fm的线性函数,即Fi对各指标的影响是线性的,则有因子模型:X1=a11F1+a12F2+…+a1mFm+ε1X2=a21F1+a22F2+…+a2mFm+ε2………Xp=ap1F1+ap2F2+…+apmFm+εp简记为:X=AF+ε其中F=(F1,F2,…,Fm)′为公共因子,ε=(ε1,ε2,…εm)′为特殊因子,F与ε均为不可观测的随机变量,A=(aij)p×m为因子载荷矩阵,aij称为第j个因子对第i个变量的载荷系数。在模型中,特殊因子起着残差的作用,且他们彼此不相关且与公共因子也不相关。每个公共因子假定至少对2个变量有贡献,否则它将是一个特殊因子。采用该方法所得的分析结果受到原始指标间相关程度均衡性的影响,且因为因子得分是估计值,其综合评价值不如主成分分析所得综合评价值准确。1.13功效函数法[19]功效函数法是根据多目标规划原理提出来的,其基本思想是通过功效函数将不同量纲的各指标实际值转化为无量纲的功效系数,再根据各指标的权重关系得到综合评价值,以综合评价值作为综合评价的依据。首先采用专家打分法、类比函数法把定性指标作量化处理得到aij→依据指标类型选择公式(1)(2)(3)把有量纲值化为无量纲值rij→依据指标的权重(uj)、根据公式(4)
本文标题:多指标综合评价方法及权重系数的选择
链接地址:https://www.777doc.com/doc-4803508 .html