您好,欢迎访问三七文档
纳米制造技术胡腾1XXX1(1.西南石油大学机电工程学院成都610500)摘要:纳米制造是多学科的新型交叉研究领域,对其基础研究的深入展开可为前沿制造技术的进步提供有力支撑。在过去的20多年里,基于纳米制造的探索已展示出宽广的发展前景,并将在多个行业为社会带来巨大的经济效益。纳米制造可分为机械加工、化学腐蚀、能量束加工、复合加工、隧道扫描显微技术加工等多种方法。本文在简要介绍纳米制造背景、应用的同时,着重介绍纳米制造技术的加工技术。关键词:纳米制造纳米机械ThenanomanufacturingtechnologyHUTeng1ZOUDi1(1.Instituteofmechanicalandelectricalengineering,SouthwestpetroleumUniversity,Chengdu610500)Abstract:Nanomanufacturingisanewinterdisciplinaryresearchfield,andthefurtherresearchonitcanprovideapowerfulsupportforthedevelopmentofadvancedmanufacturingtechnology.Inthepast20years,basedonthediscoveryofnanomanufacturinghasshownbroadprospectsfordevelopment,andwillbringhugeeconomicbenefitstosocietyinanumberofindustries.Nanofabricationcanbedividedintomanykindsofmethods,suchasmachining,chemicaletching,energybeamprocessing,compositeprocessing,andscanningmicroscopy.ThispaperatthesametimeofintroducingbrieflythemanufacturingbackgroundandapplicationinnanomachiningtechnologyintroducesemphaticallytheprocesstechnologyoftheNanomanufacturingtechnology.Keywords:NanoManufactureNanoMechanical0前言*1纳米科学技术是目前发展迅速、最富有活力的科学技术领域,受到世界各国的高度重视。纳米科学与技术集合交叉了多学科内容,是一个融前沿探索、高技术、工程应用于一体的科学技术体系。纳米科技在纳米尺寸范围内认识和改造自然,开辟了人类认识世界的新层次,使人们改造自然的能力直接延伸到分子、原子尺度水平,这标志着人类的科学技术进入了一个新时代。许多专家认为,以纳米科学为中心的科学技术将成为21世纪的主导。纳米科技包括有:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米制造学等等。其中纳米制造学占有重要地位。纳米科学技术在不同的科学领域有具体的内涵和表现,纳米制造科学技术主要涉及到纳米量级(0.1~100nm)的几何加工精度、形位加工精度和表面粗糙度。纳米制造任务不是由某一项技术独自完成的,而是由许多方法和技术所共同承担。这些方法相辅相成,各具所长,构成了纳米制造技术群,承担着丰富多样的纳米制造任务。从实现纳米微结构的方式和途径来看,构成纳米制造技术体系的方法可以分作为两类:一种是通过原子、分子的移动、搬迁、重组来构成纳米尺度的微结构,即所谓的自下而上(Bottom—up)的方法,基于扫描隧道显微镜STM的原子搬移方法属于此类;另一类方法是将大的原材料加工变小,逐步形成所需要的纳米结构或器件,这种通常所见的方式可称为自上而下(Top—down)的方式,束流、超精加工等许多方法都属于这一类。另一方面,纳米制造技术也可以按在制造过程中材料的增减方式进行分类:减材过程(微蚀除、切削加工、电加工、激光加工等)、增材过程(微沉积、ILGA精密电铸)。纳米制造有着重要的工业前景,是许多技术领域发生重大发展的基础和支撑技术。纳米制造科学技术领域还存在许多未知,需要人们去探索、了解、掌握、发明和创造。纳米制造的新概念、新技术、新工艺将不断出现,在生产实际中的应用会愈来愈深入和广泛。期1纳米技术与纳米制造1.1纳米技术概述纳米技术(nanotechnology),也称毫微技术,是研究结构尺寸在1纳米至100纳米范围内材料的性质和应用的一种技术。1981年扫描隧道显微镜发明后,诞生了一门以1到100纳米长度为研究分子世界,它的最终目标是直接以原子或分子来构造具有特定功能的产品。因此,纳米技术其实就是一种用单个原子、分子射程物质的技术。从迄今为止的研究来看,关于纳米技术分为三种概念:第一种,是1986年美国科学家德雷克斯勒博士在《创造的机器》一书中提出的分子纳米技术。根据这一概念,可以使组合分子的机器实用化,从而可以任意组合所有种类的分子,可以制造出任何种类的分子结构。这种概念的纳米技术还未取得重大进展。第二种概念把纳米技术定位为微加工技术的极限。也就是通过纳米精度的加工来人工形成纳米大小的结构的技术。这种纳米级的加工技术,也使半导体微型化即将达到极限。现有技术即使发展下去,从理论上讲终将会达到限度,这是因为,如果把电路的线幅逐渐变小,将使构成电路的绝缘膜变得极薄,这样将破坏绝缘效果。此外,还有发热和晃动等问题。为了解决这些问题,研究人员正在研究新型的纳米技术。第三种概念是从生物的角度出发而提出的。本来,生物在细胞和生物膜内就存在纳米级的结构。DNA分子计算机、细胞生物计算机的开发,成为纳米生物技术的重要内容。纳米技术是一门交叉性很强的综合学科,研究的内容涉及现代科技的广阔领域。纳米科学与技术主要包括:纳米体系物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工学、纳米力学等。这七个相对独立又相互渗透的学科和纳米材料、纳米器件、纳米尺度的检测与表征这三个研究领域。纳米材料的制备和研究是整个纳米科技的基础。其中,纳米物理学和纳米化学是纳米技术的理论基础,而纳米电子学是纳米技术最重要的内容。1.2纳米技术的发展纳米技术的灵感,来自于已故物理学家理查德·费曼1959年所作的一次题为《在底部还有很大空间》的演讲。这位当时在加州理工大学任教的教授向同事们提出了一个新的想法。从石器时代开始,人类从磨尖箭头到光刻芯片的所有技术,都与一次性地削去或者融合数以亿计的原子以便把物质做成有用的形态有关。费曼质问道,为什么我们不可以从另外一个角度出发,从单个的分子甚至原子开始进行组装,以达到我们的要求?他说:“至少依我看来,物理学的规律不排除一个原子一个原子地制造物品的可能性。”70年代,科学家开始从不同角度提出有关纳米科技的构想,1974年,科学家谷口纪男(NorioTaniguchi)最早使用纳米技术一词描述精密机械加工;1981年,科学家发明研究纳米的重要工具——扫描隧道显微镜,为我们揭示一个可见的原子、分子世界,对纳米科技发展产生了积极促进作用;1990年,IBM公司阿尔马登研究中心的科学家成功地对单个的原子进行了重排,纳米技术取得一项关键突破。他们使用一种称为扫描探针的设备慢慢地把35个原子移动到各自的位置,组成了IBM三个字母。这证明费曼是正确的,二个字母加起来还没有3个纳米长。不久,科学家不仅能够操纵单个的原子,而且还能够“喷涂原子”。使用分子束外延长生长技术,科学家们学会了制造极薄的特殊晶体薄膜的方法,每次只造出一层分子。现代制造计算机硬盘读写头使用的就是这项技术。著名物理学家、诺贝尔奖获得者理查德·费曼预言,人类可以用小的机器制作更小的机器,最后将变成根据人类意愿,逐个地排列原子,制造产品,这是关于纳米技术最早的梦想。1990年7月,第一届国际纳米科学技术会议在美国巴尔的摩举办,标志着纳米科学技术的正式诞生;1991年,碳纳米管被人类发现,它的质量是相同体积钢的六分之一,强度却是钢的10倍,成为纳米技术研究的热点,诺贝尔化学奖得主斯莫利教授认为,纳米碳管将是未来最佳纤维的首选材料,也将被广泛用于超微导线、超微开关以及纳米级电子线路等;1993年,继1989年美国斯坦福大学搬走原子团“写”下斯坦福大学英文、1990年美国国际商用机器公司在镍表面用35个氙原子排出“IBM”之后,中国科学院北京真空物理实验室自如地操纵原子成功写出“中国”二字,标志着中国开始在国际纳米科技领域占有一席之地;1997年,美国科学家首次成功地用单电子移动单电子,利用这种技术可望在2017年后研制成功速度和存贮容量比现在提高成千上万倍的量子计算机;1999年,巴西和美国科学家在进行纳米碳管实验时发明了世界上最小的“秤”,它能够称量十亿分之一克的物体,即相当于一个病毒的重量;此后不久,德国科学家研制出能称量单个原子重量的秤,打破了美国和巴西科学家联合创造的纪录;到1999年,纳米技术逐步走向市场,全年基于纳米产品的营业额达到500亿美元;2001年,一些国家纷纷制定相关战略或者计划,投入巨资抢占纳米技术战略高地。日本设立纳米材料研究中心,把纳米技术列入新5年科技基本计划的研发重点;德国专门建立纳米技术研究网;美国将纳米计划视为下一次工业革命的核心,美国政府部门将纳米科技基础研究方面的投资从1997年的1.16亿美元增加到2001年的4.97亿美元。中国也将纳米科技列为中国的“973计划”进行大力的发展与其相关产业的大力扶持。1.3纳米技术与纳米制造纳米制造是描述对纳米尺度的粉末、液体等材料的规模化的生产,或者描述从纳米尺度按照自上而下或自下而上的方式制造器件,是纳米技术的一项具体的应用。05001000150020002500300035000510152025303540转速n/(r/min)扭矩M/(N•m)第三次匹配最优组合第二次匹配结果图1利用纳米技术将氙原子排成IBM图2应用纳米技术制成的服装“纳米制造”尽管被美国国家纳米技术倡议(NNI)等广泛使用,但并没有给出纳米制造的明确定义。相反,纳米组装则被定义为:通过直接或者自组装方法,在原子或分子水平上制造功能结构或者设备的能力。相对于纳米组装而言,纳米制造更偏重于纳米技术产品的工业级别制造,其重点更多的在于低成本和可靠性等方面。1.4纳米加工众所周知,欲得到1纳米的加工精度,加工的最小单位必然在亚微米级。由于原子间的距离为0.1-0.3nm,纳米级加工实际已到加工的极限。纳米级加工是将试件表面的一个个原子或分子作为直接的加工对象,所以,纳米级加工的物理实质就是要切断原子间的结合。实现原子或分子的去除。而各种物质是以共价键、金属键、离子键或分子结构的形式结合而组成,要切断原子间的结合需要很大的能量密度。在机械加工中,工具材料的原子间结合能必须大于被加工材料的原子间结合能。而传统的切削、磨削加工消耗的能量较小,实际上是利用原子、分子或晶体间连接处的缺陷而进行加工的,但想要切断原子间的结合就相当困难的。因此,纳米加工的物理实质与传统的切削、磨削加工有很大区别。直接利用光子、电子、离子等基本能子的加工是纳米级加工的主要方向和主要方法。纳米级加工精度:与常规精加工的比较,纳米级加工中工件表面的原子和分子是直接加工的对象.即需切断原子间的结合纳米加工实际已到了加工的极限而常规的精加工欲控制切断原子间的结合是无能为力的,其局限性在于:1)高精度加工工件时,切削量应尽量小而常规的切削和磨削加工,要达到纳米级切除量,切削刀具的刀刃钝圆半径必须是纳米级,研磨磨料也必须是超细微粉.目前对纳米级刃口半径还无法直接测量。期2)工艺系统的误差复映到工件,工艺系统的受力/热变形、振动、工件装夹等都将影响工精度。3)即使检测手段和补偿原理正确,加工误差的补偿也是有限的。4)加工过程中存在不稳定因素如切削热,环境变化及振动等。由此可见.传统的切削/磨削方法,一方面由
本文标题:纳米制造技术
链接地址:https://www.777doc.com/doc-4806499 .html