您好,欢迎访问三七文档
当前位置:首页 > 高等教育 > 其它文档 > 人教版数学八年级全等三角形的判定-12.2.2边角边课件
全等三角形的判定边角边(SAS)思考如果两个三角形有三组对应相等的元素(边或角),那么会有哪几种可能的情况?这时,这两个三角形一定会全等吗?上节课我们讨论了以下问题:有以下的四种情况:三角、三边、两边一角、两角一边.思考如果已知两个三角形有两边一角对应相等时,应分为几种情形讨论?边-角-边边-边-角AAA'A'BB'BB'CCC'C'体会分类的原则:不重、不漏做一做画一个三角形,使它的一个内角为45°,夹这个角的一条边为3厘米,另一条边长为4厘米.步骤:1.画一线段AB,使它等于4cm2.画∠MAB=45°3.在射线AM上截取AC=3cm4.连结BC.△ABC就是所求的三角形温馨提示把你画的三角形与同桌画的三角形进行比较,你们的三角形全等吗?动画演示如果两个三角形有两边及其夹角分别对应相等,那么这两个三角形全等.简记为SAS(或边角边).三角形全等的判定方法(1):几何语言:在△ABC与△A’B’C’中ABCA’B’C’AB=A’B’∠B=∠B’BC=B’C’∴△ABC≌△A’B’C’(SAS)探究新知⑴∵这是一个公理。如图,在△ABC和△ABD中,AB=AB,AC=AD,∠B=∠B,但△ABC和△ABD不全等.探索“SSA”能否识别两三角形全等问题3两边一角分别相等包括“两边夹角”和“两边及其中一边的对角”分别相等两种情况,前面已探索出“SAS”判定三角形全等的方法,那么由“SSA”的条件能判定两个三角形全等吗?ABCD画△ABC和△DEF,使∠B=∠E=30°,AB=DE=5cm,AC=DF=3cm.观察所得的两个三角形是否全等?两边和其中一边的对角这三个条件无法唯一确定三角形的形状,所以不能保证两个三角形全等.因此,△ABC和△DEF不一定全等.探索“SSA”能否识别两三角形全等例题讲解例1:如图,在△ABC中,AB=AC,AD平分∠BAC,求证:△ABD≌△ACD.ABCD证明:∴∠BAD=∠CADAD=AD∴△ABD≌△ACD(SAS)∵AD平分∠BAC在△ABD与△ACD中∵AB=AC∠BAD=∠CAD例题推广1、如图,在△ABC中,AB=AC,AD平分∠BAC,求证:∠B=∠C.ABCD证明:∵∴∠BAD=∠CADAD=AD∴△ABD≌△ACD(SAS)∵AD平分∠BAC在△ABD与△ACD中AB=AC∠BAD=∠CAD∴∠B=∠C(全等三角形的对应角相等)利用“SAS”和“全等三角形的对应角相等”这两条公理证明了“等腰三角形的两个底角相等”这条定理。例题拓展2、如图,在△ABC中,AB=AC,AD平分∠BAC,求证:.BD=CDABCD证明:∴BD=CD(全等三角形的对应边相等)这就说明了点D是BC的中点,从而AD是底边BC上的中线。AD⊥BC∴∠ADB=∠ADC(全等三角形的对应角相等)又∵∠ADB+∠ADC=180°∴∠ADB=∠ADC=90°∴AD⊥BC这就说明了AD是底边BC上的高。“三线合一”∵∴∠BAD=∠CADAD=AD∴△ABD≌△ACD(SAS)∵AD平分∠BAC在△ABD与△ACD中AB=AC∠BAD=∠CAD归纳:判定两条线段相等或二个角相等可以通过从它们所在的两个三角形全等而得到。题中的两个三角形是否全等?△ABC≌△EFD根据“SAS”如图,在△AEC和△ADB中,已知AE=AD,AC=AB。请说明△AEC≌△ADB的理由。AE=____(已知)____=_____(公共角)_____=AB()∴△_____≌△______()AEBDCADACSAS解:在△AEC和△ADB中∠A∠A已知AECADB例2已知:如图,AB=CB,∠ABD=∠CBD,△ABD和△CBD全等吗?分析:△ABD≌△CBD边:角:边:AB=CB(已知)∠ABD=∠CBD(已知)?ABCD(SAS)例3:已知:如图,AB=CB,∠ABD=∠CBD,△ABD和△CBD全等吗?解:∴△ABD≌△CBD(SAS)AB=CB∠ABD=∠CBDABCD例2:在△ABD和△CBD中BD=BD1:如图,已知AB和CD相交与O,OA=OB,OC=OD.说明△OAD与△OBC全等的理由OA=OB(已知)∠1=∠2(对顶角相等)OD=OC(已知)∴△OAD≌△OBC(S.A.S)解:在△OAD和△OBC中CBADO21巩固练习一题多变让学生加深对“证明两个角相等或者两条线段相等,可以转化为证它们所在的三角形全等而得到”的理解,并培养学生综合应用新旧知识的能力突破难点某校八年级一班学生到野外活动,为测量一池塘两端A、B的距离。设计了如下方案:如图,先在平地上取一个可直接到达A、B的点C,再连结AC、BC并分别延长AC至E,使DC=BC,EC=AC,最后测得DE的距离即为AB的长.你认为这种方法是否可行?为什么?C·AEDB实际应用例题讲解,学会运用AC=DC(已知),∠1=∠2(对顶角相等),BC=EC(已知),证明:在△ABC和△DEC中,ABCDE12∴△ABC≌△DEC(SAS).∴AB=DE(全等三角形的对应边相等).问题:有一块三角形的玻璃打碎成如图的两块,如果要到玻璃店去照样配一块,带哪一块去?补充与实际生活相关的例题,让学生体会到全等三角形在实际生活中的应用,感到数学知识与实际生活密切相关,提高学生的学习兴趣.联系实际以2.5cm,3.5cm为三角形的两边,长度为2.5cm的边所对的角为40°,情况又怎样?ABCDEF40°40°结论:两边及其一边的对角相等,两个三角形不一定全等“如果两个三角形二条边和一个角对应相等,那么这两个三角形全等.”这个命题是真命题吗?你能举个反例说明吗?如图△ABC与△ABD中,AB=AB,AC=AD,∠B=∠B它们全等吗?BACD注:这个角一定要是这两边所夹的角课堂小结今天你学到了什么?1、今天我们学习了哪种方法判定两个三角形全等?通过证明三角形全等可以证明两条线段相等等、两个角相等。答:SAS(边角边)(角夹在两条边的中间,形成两边夹一角)2、“边边角”能不能判定两个三角形全等?答:不能作业:1.必做:练习册1~7题.2.选做:练习册41P8题.41P作业分层布置面向全体,因材施教五、教学评价与反馈(一)在整个练习过程中,学生最可能会出现以下错误:1.在证明两个三角形全等之前未指明在哪两个三角形中.2.对应顶点字母未放在对应位置.针对这两种情况,教师在讲解例题和讲评习题时应加以强调.(二)在教学过程中,随时注意信息反馈,从学生的语言、表情、答题情况等,判断学生掌握知识的程度.采用不同的练习方法(如口答、笔答、板演等),以增加反馈层面,使大多数学生的学习情况都能及时地反馈给教师.(三)及时评价.
本文标题:人教版数学八年级全等三角形的判定-12.2.2边角边课件
链接地址:https://www.777doc.com/doc-4826498 .html