您好,欢迎访问三七文档
习题与解答3.11.一批产品中有一等品50%,二等品30%,三等品20%。从中有放回的抽出5件,以分别表示取出的5见中一等品、二等品的件数,求(X,Y)的联合分布列.解:这是一个三项分布,若驱除的5件中有i件一等品、j件二等品,则有5-i-j件三等品,所以当i=0,1,,5,j=0,1,,5,i+j≤5时,有用表格形式表示如下:55!(,)(0.5)(0.3)(0.2)!!(5)ijijPXiyjijij1.000000.002430.028350.13230.30870.360150.16807列和0.031250.000000.000000.00000.00000.000000.0312550.156250.000000.000000.00000.00000.093750.0625040.312500.000000.000000.00000.11250.150000.0500030.312500.000000.000000.06750.13500.090000.0200020.156250.000000.020250.05400.05400.024000.0040010.031250.002430.008100.01080.00720.002400.000320行和543210XY行和就是X的分布b(5,0.5).列和就是Y的分布b(5,0.3).P(X≥2,Y≥1)=0.09+0.135+0.0675+0.15+0.1125+0.09375=0.648752.100件产品中有50件一等品、30件二等品、20件三等品。从中部放回地抽取5件,以X、Y分别表示取出地5件中一等品、二等品地件数,求(X,Y)的联合分布。解:这是一个三维超几何分布,若取出的5件中有i件一等品、j件二等品,则有5-i-j件三等品,所以当i=0,1,,5,j=0,1,,5,i+j≤5时,有用表格形式表示如下:0.318910.000000.000000.066060.141560.092740.0185520.152950.000000.018200.053930.054890.022710.0032210.028140.001890.007280.010240.006590.001930.000210行和543210XY30.318910.000000.000000.000000.113250.156200.049460.152950.000000.000000.000000.000000.091770.06118450.028140.000000.000000.000000.000000.000000.02814列和1.000000.001890.025480.130230.316290.365350.16076行和就是X的分布h(5,100,50)(超几何分布)列和就是Y的分布h(5,100,30)(超几何分布)P(X≥2,Y≤1)=0.661583.盒子里有3个黑球、2个红球、2个白球,从中任取4个,以X表示取到黑球的个数,以Y表示取到红球的个数,试求P(X=Y).解4.设随机变量,i=1,2的分布列如下,且满足P(=0)=1;试求P().解记(,)的联合分布列为322322()()()()()()112220639()(1,1)(2,2)0.257177353535()()44PXYPXYPXYiX2X1X2X1X-101P0.250.50.25iX2X1X-101-1011X2X11p12p13p21p22p23p31p32p33p12122122233211133133(0)110.PXXppppppppp由知:,所以即-101-10001002X1X12p21p22p23p32p10.25(1)PX又因为12121211121312,122322123P(1,2)(1,0)(1,1)(1)(1)(1)0.250.25,XXPXXPXXppppPXPXPXppp同理有可知即2X1X10110100000.250.250.250.2522p2233420,05.(,)(6)(6XYxydydxk221211k(6-x-y),0x2,2y40,其他20又由分布列的正规性得p因此 P(X=X)=ppp设随机变量的联合密度函数为p(x,y)=试求(1)常数k;(2)P(X1,Y3);(3)P(X1.5);(4)P(X+Y4);解:(1)由k2030011241.51.50022)81,1/8.113(2)(1,3)(6)(3.5).8881127(3)(1.5)(6)(62).8832(4)(,)xdxkkPXYxydydxxdxPXxydydxxdxpxy解得的非零区域与x+y4的交集如图3.1的阴影部分,xy0224x+y=43.1图40220223.11P(X+Y4)=(6)812(0.546).836.(,),0,0xxydydxxxdxXYxy-(3x+4y)由图得=设随机变量的联合密度函数为kep(x,y)=0,其他试求(1)常数k;(2)(X,Y)的联合分布函数F(x,y);(34)3400121,0200xyxyYedxdyedxedyydtdtdt121++00y-(3t+4t)x00-3t(3)P(0X).解:(1)由11kk=k=k==1,3412解得k=12.(2)当x或时,有F(x,y)=0;而当x0,y0时,F(x,y)=12e=12e121,02dty2-3x-4yxy-4t-3x-4y00(1-e)(1-e),x0,y0,0,其他。-3-8-11e=(1-e)(1-e),所以F(x,y)=(3)P(0x)=F(1,2)=1-e-e+e=0.9499.4,01,01,0,0.5100.257.p(x,y)=(1)(00.5,0.251);(2)();(3)();(4)(,)11515(1)(00.5,0.251)44.83264(2)()0.(3)(xyxyPXYPXYPXYXYPXYxdxydyPXYPXY其他.设二维随机变量(X,Y)的联合密度函数为试求的联合分布函数。解:1130002200122112001221210012211100122111)4440.5.28(4)(,)(,)00,0,4,F4,,41,4yyxyxyxydxdyydyXYFxydxdyxyttdtdtxyttdtdtxyttdtdtttdtdtx-的联合分布函数要分布如下5个区域表示:或(x,y)=001,01,01,1,1,01,1,1.xyxyxyxy21112008.(,)(1);(2)(0.5)(0.5).k()1,66.(2)(,){0.5}3.2()yxxxXYkPXPYkdxdykxxdxkpxyxb2k,0x0,其他.设二维随机变量的联合密度函数为p(x,y)=试求常数求和解(1)p(x,y)的非零区域如图3.2(a)阴影部分.由解得的非零区域与的交集为图阴影21122310.50.50.50.50.500111P(0.5)66()6()|.232(,){0.5}3.2()(0.5)66()23/40.6642.9.xxyyXdxdyxxdxxxpxyycPYdxdyyydy0,部分,所以又因为的非零区域与时间的交集为图阴影部分,所以设二维随机变量(X,Y)的联合随机密度为p(x,y)=(1)(0.5,0.5);(2)(0.5)P(0.5);(3)(1).PXYPXYPXY6(1-y),0xy1,其他.求求和求120.50.51(1)6(1.50.5)8(2)(,)0.5}3.3(6)yydxdyyydypxyx10.5解:(1)p(x,y)的非零区域与{x0.5,y0.5}的交集为图3.3(a)的阴影部分,所以P(X0.5,Y0.5)=6的非零区域与{的交集为图阴影部分,所以0.510.52000.50.50.5200117(0.5)6(1)6()228131(0.5)6(1)6()282xxpXydydxxxdxpYydydxxxdx(3)0.510.50013(X+1)6(1)6()24xxpYydydxxdx0,,1,,1,2,0.63212,YkkYkXkYk1212-11212-11210.设随机变量Y服从参数为=1的指数分布,定义随机变量X如下:求X,X的联合分布数列。解:(X,X)的联合分布列共有如下四种情况:P(X=0,X=0)=P(Y1,Y2)=p(Y1)=1-eP(X=0,X=1)=P(Y1,Y2)=0,P(X=1,X=0)=P(Y1,Y2)=P(12)=e0.23254,0.13534.-2-212-eP(X=1,X=1)=P(Y1,Y2)=P(Y2)=1-P(Y2)=e所以的联合分布列为0100.632120.0000010.232540.135341X2X2121222001113243210011.,01,02.30,(1).(1)()()3654154165()().63224947212.(,)xxxyxyPXYxyxPXYxdydxxyyxxxdxxxxXY2设二维随机变量(X,Y)的联合密度函数为xp(x,y)=其他求解:设二维随机变量的联合密度函数为,00,10.50.51(1)0010.5(,)(1).()()120.1548.yexyxyxxxxxpxyPXYdydxedxeedxee其他.0.5-y0试求解P(X+Y1)=e0,20.513.(,)15P.2814.XYdxdy1/2,0x1,0y2,其他.10.5设二维随机变量的联合密度函数为p(x,y)=求X与Y中至少有一个小于0.5的概率。解:两件事{X0.5}与{Y0.5}中至少有一个发生的概率为({X0.5}{Y0.5})=1-P(X0.5,Y0.5)=1-从(0,1)中随机地取两个数,求其积不小13/43/431/41/41623/41/43/1613{3/16,1}(1)161313(ln)ln30.0440.216416xxPXYXYdydxxdxxxxx1,0x1,0y1,0,其他.于,且其和不大于的概率.解:设取出的两个数分别为X和Y,则(X,Y)的联合密度函数为p(x,y)={15.(,)(,),(,)XYFxyFxy设二维随机变量的联合分布函数为试用求下列概率:(1)P(aXb,cYd);(2)P(aXb,cYd);(3)P(aXb,Yc);(4)P(X=a,Yb);(5)P(X-,Y+).解:(1)P(aXb,cYd)=F(b,d)-F(b,c)-F(a,d)+F(a,c).(2)P(aXb,cYd,aY)=P(Xb,Yd)-P(Xb,Yc)-P(Xa,Yd)+P(Xa,Yc)=F(b-0,d)-F(b-0,c-0)-F(a-0,d)+F(a-0,c-0).(3)P(aXb,Yc)=P(
本文标题:概率统计课件
链接地址:https://www.777doc.com/doc-4828964 .html