您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 绩效管理 > 北师大版八年级当数学下册第二章分解因式2.2提公因式法(2)PPT课件
提公因式法(第二课时)北师大版:分解因式1、多项式的第一项系数为负数时,先提取“-”号,注意多项式的各项变号;复习:提公因式法2、公因式的系数是多项式各项__________________;3、字母取多项式各项中都含有的____________;4、相同字母的指数取各项中最小的一个,即_________.系数的最大公约数相同的字母最低次幂(1)8mn+2mn=(2)ab–5ab+9b=(3)-3ma+6ma–12ma=(4)–2x+4x–2x=想一想:提公因式法分解因式与单项式乘多项式有什么关系?把下列各式分解因式:2232232mn(4n+1)b(a-5b+9)2-3ma(a-2a+4)2-2x(x-2x+1)=-2x(x-1)22在下列各式等号右边的括号前填入“+”或“-”号,使等式成立:(1)(a-b)=___(b-a);(2)(a-b)2=___(b-a)2;(3)(a-b)3=___(b-a)3;(4)(a-b)4=___(b-a)4;(5)(a+b)5=___(b+a)5;(6)(a+b)6=___(b+a)6.+--+++(7)(a+b)=___(-b-a);-(8)(a+b)2=___(-a-b)2.+做一做p50填空由此可知规律:(1)a-b与-a+b互为相反数.(a-b)n=(b-a)n(n是偶数)(a-b)n=-(b-a)n(n是奇数)(2)a+b与b+a互为相同数,(a+b)n=(b+a)n(n是整数)a+b与-a-b互为相反数.(-a-b)n=(a+b)n(n是偶数)(-a-b)n=-(a+b)n(n是奇数)练习一1.在下列各式右边括号前添上适当的符号,使左边与右边相等.(1)a+2=___(2+a)(2)-x+2y=___(2y-x)(3)(m-a)2=___(a-m)2(4)(a-b)3=___(-a+b)3(5)(x+y)(x-2y)=___(y+x)(2y-x)+++--2.判断下列各式是否正确?(1)(y-x)2=-(x-y)2(2)(3+2x)3=-(2x+3)3(3)a-2b=-(-2b+a)(4)-a+b=-(a+b)(5)(a-b)(x-2y)=(b-a)(2y-x)××××√例1.把a(x-3)+2b(x-3)分解因式.解:a(x-3)+2b(x-3)=(x-3)(a+2b)分析:多项式可看成a(x-3)与2b(x-3)两项。公因式为x-3经典例题例2.把a(x-y)+b(y-x)分解因式.解:a(x-y)+b(y-x)=a(x-y)-b(x-y)=(x-y)(a-b)分析:多项式可看成a(x-y)与+b(y-x)两项。其中X-y与y-x互为相反数,可将+b(y-x)变为-b(x-y),则a(x-y)与-b(x-y)公因式为(x-y)例3.把6(m-n)3-12(n-m)2分解因式.解:6(m-n)3-12(n-m)2=6(m-n)3-12(m-n)2=6(m-n)2(m-n-2)分析:其中(m-n)与(n-m)互为相反数.可将-12(n-m)2变为-12(m-n)2,则6(m-n)3与-12(m-n)2公因式为6(m-n)2例4.把6(x+y)(y-x)2-9(x-y)3分解因式.解:6(x+y)(y-x)2-9(x-y)3=6(x+y)(x-y)2-9(x-y)3=3(x-y)2[2(x+y)-3(x-y)]=3(x-y)2(2x+2y-3x+3y)=3(x-y)2(-x+5y)=3(x-y)2(5y-x)(2)5x(a-b)2+10y(b-a)2)3(23)(12)(6mnnm---)1((()xyb--)yxa-(4)a(a+b)(a-b)-a(a+b)2(5)mn(m+n)-m(n+m)2(6)2(a-3)2-a+3(7)a(x-a)+b(a-x)-c(x-a)练习二分解因式:小结两个只有符号不同的多项式是否有关系,有如下判断方法:(1)当相同字母前的符号相同时,则两个多项式相等.如:a-b和-b+a即a-b=-b+a(2)当相同字母前的符号均相反时,则两个多项式互为相反数.如:a-b和b-a即a-b=-(b-a)P521.2.3.新课堂探究P38与配套练习共同进步!
本文标题:北师大版八年级当数学下册第二章分解因式2.2提公因式法(2)PPT课件
链接地址:https://www.777doc.com/doc-4842839 .html