您好,欢迎访问三七文档
1复数【知识梳理】一、复数的基本概念1、虚数单位的性质i叫做虚数单位,并规定:①i可与实数进行四则运算;②12i;这样方程12x就有解了,解为ix或ix2、复数的概念(1)定义:形如bia(a,b∈R)的数叫做复数,其中i叫做虚数单位,a叫做,b叫做。全体复数所成的集合C叫做复数集。复数通常用字母z表示,即biaz(a,b∈R)对于复数的定义要注意以下几点:①biaz(a,b∈R)被称为复数的代数形式,其中bi表示b与虚数单位i相乘②复数的实部和虚部都是实数,否则不是代数形式(2)分类:满足条件(a,b为实数)复数的分类a+bi为实数⇔b=0a+bi为虚数⇔b≠0a+bi为纯虚数⇔a=0且b≠0例题:当实数m为何值时,复数immmm)3()65(2是实数?虚数?纯虚数?二、复数相等),,,(,Rdcbadbcadicbia也就是说,两个复数相等,充要条件是他们的实部和虚部分别相等注意:只有两个复数全是实数,才可以比较大小,否则无法比较大小例题:已知0)4()3(ixyx求yx,的值三、共轭复数bia与dic共轭),,,(,Rdcbadbcabiaz的共轭复数记作biaz_,且22_bazz四、复数的几何意义1、复平面的概念建立直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数。22、复数的几何意义复数biaz与复平面内的点),(baZ及平面向量),(baOZ),(Rba是一一对应关系(复数的实质是有序实数对,有序实数对既可以表示一个点,也可以表示一个平面向量)相等的向量表示同一个复数例题:(1)当实数m为何值时,复平面内表示复数immmmz)145()158(22的点①位于第三象限;②位于直线xy上(2)复平面内)6,2(AB,已知ABCD//,求CD对应的复数3、复数的模:向量OZ的模叫做复数biaz的模,记作z或bia,表示点),(ba到原点的距离,即z22babia,zz若biaz1,dicz2,则21zz表示),(ba到),(dc的距离,即2221)()(dbcazz例题:已知iz2,求iz1的值五、复数的运算(1)运算法则:设z1=a+bi,z2=c+di,a,b,c,d∈R①idbcadicbiazz)()(21②iadbcbdacdicbiazz)()()()(21③2221)()()()())(()()(dciadbcbdacdicdicdicbiadicbiazz(2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行.如图给出的平行四边形OZ1ZZ2可以直观地反映出复数加减法的几何意义,即OZ→=OZ1→+OZ2→,Z1Z2→=OZ2→-OZ1→.六、常用结论(1)i,12i,ii3,14i求ni,只需将n除以4看余数是几就是i的几次例题:675i(2)ii2)1(2,ii2)1(2(3)1)2321(3i,1)2321(3i3【思考辨析】判断下面结论是否正确(请在括号中打“√”或“×”)(1)方程x2+x+1=0没有解.()(2)复数z=a+bi(a,b∈R)中,虚部为bi.()(3)复数中有相等复数的概念,因此复数可以比较大小.()(4)原点是实轴与虚轴的交点.()(5)复数的模实质上就是复平面内复数对应的点到原点的距离,也就是复数对应的向量的模.()【考点自测】1.(2015·安徽)设i是虚数单位,则复数(1-i)(1+2i)等于()A.3+3iB.-1+3iC.3+iD.-1+i2.(2015·课标全国Ⅰ)已知复数z满足(z-1)i=1+i,则z等于()A.-2-iB.-2+iC.2-iD.2+i3.在复平面内,复数6+5i,-2+3i对应的点分别为A,B.若C为线段AB的中点,则点C对应的复数是()A.4+8iB.8+2iC.2+4iD.4+i4.已知a,b∈R,i是虚数单位.若a+i=2-bi,则(a+bi)2等于()A.3-4iB.3+4iC.4-3iD.4+3i5.已知(1+2i)z=4+3i,则z=________.【题型分析】题型一复数的概念例1(1)设i是虚数单位.若复数z=a-103-i(a∈R)是纯虚数,则a的值为()A.-3B.-1C.1D.3(2)已知a∈R,复数z1=2+ai,z2=1-2i,若z1z2为纯虚数,则复数z1z2的虚部为()A.1B.iC.25D.0(3)若z1=(m2+m+1)+(m2+m-4)i(m∈R),z2=3-2i,则“m=1”是“z1=z2”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分又不必要条件引申探究1.对本例(1)中的复数z,若|z|=10,求a的值.2.在本例(2)中,若z1z2为实数,则a=________.4思维升华解决复数概念问题的方法及注意事项(1)复数的分类及对应点的位置都可以转化为复数的实部与虚部应该满足的条件问题,只需把复数化为代数形式,列出实部和虚部满足的方程(不等式)组即可.(2)解题时一定要先看复数是否为a+bi(a,b∈R)的形式,以确定实部和虚部.(1)若复数z=(x2-1)+(x-1)i为纯虚数,则实数x的值为()A.-1B.0C.1D.-1或1(2)(2014·浙江)已知i是虚数单位,a,b∈R,则“a=b=1”是“(a+bi)2=2i”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件题型二复数的运算命题点1复数的乘法运算例2(1)(2015·湖北)i为虚数单位,i607的共轭复数为()A.iB.-iC.1D.-1(2)(2015·北京)复数i(2-i)等于()A.1+2iB.1-2iC.-1+2iD.-1-2i命题点2复数的除法运算例3(1)(2015·湖南)已知1-i2z=1+i(i为虚数单位),则复数z等于()A.1+iB.1-iC.-1+iD.-1-i(2)(1+i1-i)6+2+3i3-2i=________.命题点3复数的运算与复数概念的综合问题例4(1)(2015·天津)i是虚数单位,若复数(1-2i)(a+i)是纯虚数,则实数a的值为________.(2)(2014·江苏)已知复数z=(5+2i)2(i为虚数单位),则z的实部为________.命题点4复数的综合运算例5(1)(2014·安徽)设i是虚数单位,z表示复数z的共轭复数.若z=1+i,则zi+i·z等于()A.-2B.-2iC.2D.2i(2)若复数z满足(3-4i)z=|4+3i|,则z的虚部为()A.-4B.-45C.4D.455思维升华复数代数形式运算问题的常见类型及解题策略(1)复数的乘法.复数的乘法类似于多项式的四则运算,可将含有虚数单位i的看作一类同类项,不含i的看作另一类同类项,分别合并即可.(2)复数的除法.除法的关键是分子分母同乘以分母的共轭复数,解题中要注意把i的幂写成最简形式.(3)复数的运算与复数概念的综合题,先利用复数的运算法则化简,一般化为a+bi(a,b∈R)的形式,再结合相关定义解答.(4)复数的运算与复数几何意义的综合题.先利用复数的运算法则化简,一般化为a+bi(a,b∈R)的形式,再结合复数的几何意义解答.(5)复数的综合运算.分别运用复数的乘法、除法法则进行运算,要注意运算顺序,要先算乘除,后算加减,有括号要先算括号里面的.(1)(2015·山东)若复数z满足z1-i=i,其中i为虚数单位,则z等于()A.1-iB.1+iC.-1-iD.-1+i(2)1+i1-i2016=________.(3)-23+i1+23i+21-i2016=________.题型三复数的几何意义例6(1)(2014·重庆)实部为-2,虚部为1的复数所对应的点位于复平面的()A.第一象限B.第二象限C.第三象限D.第四象限(2)△ABC的三个顶点对应的复数分别为z1,z2,z3,若复数z满足|z-z1|=|z-z2|=|z-z3|,则z对应的点为△ABC的()A.内心B.垂心C.重心D.外心思维升华因为复平面内的点、向量及向量对应的复数是一一对应的,要求某个向量对应的复数时,只要找出所求向量的始点和终点,或者用向量相等直接给出结论即可.(1)如图,在复平面内,点A表示复数z,则图中表示z的共轭复数的点是()A.AB.BC.CD.D(2)已知z是复数,z+2i、z2-i均为实数(i为虚数单位),且复数(z+ai)2在复平面内对应的点在第一象限,求实数a的取值范围.6【思想与方法】解决复数问题的实数化思想典例已知x,y为共轭复数,且(x+y)2-3xyi=4-6i,求x,y.思维点拨(1)x,y为共轭复数,可用复数的基本形式表示出来;(2)利用复数相等,将复数问题转化为实数问题.温馨提醒(1)复数问题要把握一点,即复数问题实数化,这是解决复数问题最基本的思想方法.(2)本题求解的关键是先把x、y用复数的基本形式表示出来,再用待定系数法求解.这是常用的数学方法.(3)本题易错原因为想不到利用待定系数法,或不能将复数问题转化为实数方程求解.【方法与技巧】1.复数的代数形式的运算主要有加、减、乘、除及求低次方根.除法实际上是分母实数化的过程.2.复数z=a+bi(a,b∈R)是由它的实部和虚部唯一确定的,两个复数相等的充要条件是复数问题转化为实数问题的主要方法.对于一个复数z=a+bi(a,b∈R),既要从整体的角度去认识它,把复数看成一个整体,又要从实部、虚部的角度分解成两部分去认识.3.在复数的几何意义中,加法和减法对应向量的三角形法则,其方向是应注意的问题,平移往往和加法、减法相结合.【失误与防范】1.判定复数是实数,仅注重虚部等于0是不够的,还需考虑它的实部是否有意义.2.两个虚数不能比较大小.3.注意复数的虚部是指在a+bi(a,b∈R)中的实数b,即虚部是一个实数.【巩固练习】1.(2015·福建)若(1+i)+(2-3i)=a+bi(a,b∈R,i是虚数单位),则a,b的值分别等于()A.3,-2B.3,2C.3,-3D.-1,42.设z=11+i+i,则|z|等于()A.12B.22C.32D.23.(2015·课标全国Ⅱ)若a为实数,且(2+ai)(a-2i)=-4i,则a等于()A.-1B.0C.1D.24.若i为虚数单位,图中复平面内点Z表示复数z,则表示复数z1+i的点是()A.EB.FC.GD.H75.(2014·江西)z是z的共轭复数,若z+z=2,(z-z)i=2(i为虚数单位),则z等于()A.1+iB.-1-iC.-1+iD.1-i6.(2015·江苏)设复数z满足z2=3+4i(i是虚数单位),则z的模为________.7.若3+bi1-i=a+bi(a,b为实数,i为虚数单位),则a+b=________.8.复数(3+i)m-(2+i)对应的点在第三象限内,则实数m的取值范围是________.9.计算:(1)-1+i2+ii3;(2)1+2i2+31-i2+i;(3)1-i1+i2+1+i1-i2;(4)1-3i3+i2.10.复数z1=3a+5+(10-a2)i,z2=21-a+(2a-5)i,若z1+z2是实数,求实数a的值.【能力提升】11.复数z1,z2满足z1=m+(4-m2)i,z2=2cosθ+(λ+3sinθ)i(m,λ,θ∈R),并且z1=z2,则λ的取值范围是()A.[-1,1]B.-916,1C.-916,7D.916,712.设f(n)=1+i1-in+1-i1+in(n∈N*),则集合{f(n)}中元素的个数为()A.1B.2C.3D.无数个13
本文标题:复数知识点归纳
链接地址:https://www.777doc.com/doc-4859177 .html