您好,欢迎访问三七文档
1四点共圆一、知识点梳理1、四点共圆的概念如果同一平面内的四个点在同一个圆上,则称这四个点共圆,一般简称为“四点共圆”。性质:①圆内接四边形的对角互补;②圆内接四边形的一个外角等于它的内对角。2、初中阶段四点共圆的常见判定方法(1)共底边的两个直角三角形,则四个顶点共圆,且直角三角形的斜边为圆的直径。(2)共底边的两个三角形顶角相等,且在底边的同侧,则四个顶点共圆。(3)对于凸四边形ABCD,对角互补四点共圆。(4)相交弦定理的逆定理:对于凸四边形ABCD其对角线AC、BD交于P,PDBPPCAP四点共圆。(5)割线定理:对于凸四边形ABCD其边的延长线AB、CD交于P,PDPCPBPA四点共圆。ABCDPABCDP23、四点共圆的妙用巧用四点共圆可以帮助我们在解题过程中快速地求角等、边等、相似、边长等问题。二、例题精练1、四点共圆的性质a.例题讲解1.四边形ABCD内接于⊙O,则∠A:∠B:∠C:∠D的值可以是()A.1:2:3:4B.1:3:2:4C.1:4:2:3D.1:2:4:32.如图,AB经过圆心O,四边形ABCD内接于⊙O,∠B=3∠BAC,则∠ADC的度数为()A.100°B.112.5°C.120°D.135°3.如图,点A,B,C,D在⊙O上,=,∠CAD=30°,∠ACD=50°,则∠ADB=.34.如图,在圆内接四边形ABCD中,∠A=60°,∠B=90°,AB=2,CD=1,求BC的长8.已知:如图,四边形ABCD是⊙O的内接四边形,直径DG交边AB于点E,AB、DC的延长线相交于点F.连接AC,若∠ACD=∠BAD.(1)求证:DG⊥AB;(2)若AB=6,tan∠FCB=3,求⊙O半径.DCBA4b.举一反三1.如图,四边形ABCD内接于⊙O,∠DAB=140°,连接OC,点P是半径OC上一点,则∠BPD不可能为()A.40°B.60°C.80°D.90°2.如图,四边形ABCD内接于⊙O,它的一个外角∠EBC=65°,分别连接AC,BD,若AC=AD,则∠DBC的度数为()A.50°B.55°C.65°D.70°3.如图,A、B、C、D四个点在同一个圆上,∠ADC=90°,AB=7cm,CD=5cm,AE=4cm,CF=6cm,则阴影部分的面积为cm2.54.如图,⊙O为△ABC的外接圆,且AB=AC,过点A的直线交⊙O于D,交BC延长线于F,DE是BD的延长线,连接CD.(1)求证:∠EDF=∠CDF;(2)求证:AB2=AF•AD;(3)若BD是⊙O的直径,且∠EDC=120°,BC=6cm,求AF的长.2、四点共圆的妙用之边角问题a.例题讲解1.如图,矩形ABCD的对角线AC、BD相交于点O,过点O作OE⊥AC交AB于E,若BC=4,△AOE的面积为6,则cos∠BOE=.62.如图,正方形ABCD的中心为O点,面积为25;点P为正方形内一点,且∠OPB=45°,PA:PB=3:4,则PB=3.在直线ABC的同一侧作两个等边三角形△ABD和△BCE,连接AE与CD,证明:(1)△ABE≌△DBC;(2)AE=DC;(3)AE与DC的夹角为60°;(4)△AGB≌△DFB;(5)△EGB≌△CFB;(6)BH平分∠AHC;GF∥ACHFGEDABC74.四边形ABCD是正方形,AC与BD,相交于点O,点E、F是直线AD上两动点,且AE=DF,CF所在直线与对角线BD所在直线交于点G,连接AG,直线AG交BE于点H.(1)如图1,当点E、F在线段AD上时,①求证:∠DAG=∠DCG;②猜想AG与BE的位置关系,并加以证明;(2)如图2,在(1)条件下,连接HO,试说明HO平分∠BHG;8b.举一反三1.在ABC的边AB,BC,CA上分别取D,E,F.使得BEDE,CEFE,又点O是ADF的外心.求证:O在DEF的平分线上.2.如图,已知ABC中的两条角平分线AD和CE相交于H,60B,F在AC上,且AFAE.求证:CE平分DEF.ODFACBEFDEHBAC9O1OO2DBCA3.已知AD是ABC角平分线交BC于D,ABDACDABC、、外心分别是12OOO、、,求证12=OOOO四点共圆相似的应用a.例题讲解1.在圆内接等腰三角形ABC的底边BC上任取二点D、E,延长AD、AE分别交圆于F、G,求证:AGAEAFAD.EDABCFG102.如图,AB为圆O的直径,CD为垂直于AB的一条弦,垂足为E,弦BM与CD交于点F.(1)证明:A、E、F、M四点共圆;(2)证明:22ABBMBFAC.b.举一反三1.如图,已知BA是⊙O的直径,AD是⊙O的切线,割线BD、BF分别交⊙O于C、E,连接AE、CE.求证:BDBCBFBE.FDCAOBEMCEBOADF11三、演练场1.(2014•东营)如图,四边形ABCD为菱形,AB=BD,点B、C、D、G四个点在同一个圆⊙O上,连接BG并延长交AD于点F,连接DG并延长交AB于点E,BD与CG交于点H,连接FH,下列结论:①AE=DF;②FH∥AB;③△DGH∽△BGE;④当CG为⊙O的直径时,DF=AF.其中正确结论的个数是()A.1B.2C.3D.42.(2017•扬州)如图,已知正方形ABCD的边长为4,点P是AB边上的一个动点,连接CP,过点P作PC的垂线交AD于点E,以PE为边作正方形PEFG,顶点G在线段PC上,对角线EG、PF相交于点O.(1)若AP=1,则AE=;(2)①求证:点O一定在△APE的外接圆上;②当点P从点A运动到点B时,点O也随之运动,求点O经过的路径长;(3)在点P从点A到点B的运动过程中,△APE的外接圆的圆心也随之运动,求该圆心到AB边的距离的最大值.123.(2018•路南区三模)如图1,已知∠MAN=60°,点B在射线AM上,AB=4,点P为直线AN上一动点,以BP为边作等边△BPQ(点B,P,Q按顺时针排列),点O是△BPQ的外心.(1)当OB⊥AM时,点O∠MAN的平分线上(填“在”或“不在”);(2)如图2,当点P在射线AN上运动(点P与点A不重合)时,求证:点O在∠MAN的平分线上;(3)如图2,当点P在射线AN上运动(点P与点A不重合)时,AO与BP交于点C,求证:△ABO∽△ACP;设AP=m,直接写出AC•AO的值(用含m的式子表示);(4)若点D在射线AN上,AD=2,⊙K为△ABD的内切圆,当△BPQ的边BP与⊙K相切时,请直接写出点A与点O的距离.134.(2018春•历下区期末)如图,已知菱形ABCD边长为4,BD=4,点E从点A出发沿着AD、DC方向运动,同时点F从点D出发以相同的速度沿着DC、CB的方向运动.(1)如图1,当点E在AD上时,连接BE、BF,试探究BE与BF的数量关系,并证明你的结论;(2)在(1)的前提下,求EF的最小值和此时△BEF的面积;(3)当点E运动到DC边上时,如图2,连接BE、DF,交点为点M,连接AM,则∠AMD大小是否变化?请说明理由.145.(2018•泉州二模)如图1,在矩形ABCD中,AB=,AD=3,点E从点B出发,沿BC边运动到点C,连结DE,过点E作DE的垂线交AB于点F.(1)求证:∠BFE=∠ADE;(2)求BF的最大值;(3)如图2,在点E的运动过程中,以EF为边,在EF上方作等边△EFG,求边EG的中点H所经过的路径长.156.(2015秋•南岸区期末)在正方形ABCD中,点E是对角线AC的中点,点F在边CD上,连接DE、AF,点G在线段AF上(1)如图①,若DG是△ADFD的中线,DG=2.5,DF=3,连接EG,求EG的长;(2)如图②,若DG⊥AF交AC于点H,点F是CD的中点,连接FH,求证:∠CFH=∠AFD;(3)如图③,若DG⊥AF交AC于点H,点F是CD上的动点,连接EG.当点F在边CD上(不含端点)运动时,∠EGH的大小是否发生改变?若不改变,求出∠EGH的度数;若发生改变,请说明理由.
本文标题:四点共圆
链接地址:https://www.777doc.com/doc-4864375 .html