您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2018年中考数学总复习动点问题练习(含答案)
[键入文字]2018中考数学总复习动点问题因动点产生的等腰三角形问题练习1.如图1,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,DE⊥BC交边AC于点E,点P为射线AB上的一动点,点Q为边AC上的一动点,且∠PDQ=90°.(1)求ED、EC的长;(2)若BP=2,求CQ的长;(3)记线段PQ与线段DE的交点为F,若△PDF为等腰三角形,求BP的长.图1备用图解:(1)在Rt△ABC中,AB=6,AC=8,所以BC=10.在Rt△CDE中,CD=5,所以315tan544EDCDC,254EC.(2)如图2,过点D作DM⊥AB,DN⊥AC,垂足分别为M、N,那么DM、DN是△ABC的两条中位线,DM=4,DN=3.由∠PDQ=90°,∠MDN=90°,可得∠PDM=∠QDN.因此△PDM∽△QDN.所以43PMDMQNDN.所以34QNPM,43PMQN.图2图3图4①如图3,当BP=2,P在BM上时,PM=1.此时3344QNPM.所以319444CQCNQN.②如图4,当BP=2,P在MB的延长线上时,PM=5.此时31544QNPM.所以1531444CQCNQN.(3)如图5,如图2,在Rt△PDQ中,3tan4QDDNQPDPDDM.在Rt△ABC中,3tan4BACCA.所以∠QPD=∠C.由∠PDQ=90°,∠CDE=90°,可得∠PDF=∠CDQ.因此△PDF∽△CDQ.当△PDF是等腰三角形时,△CDQ也是等腰三角形.①如图5,当CQ=CD=5时,QN=CQ-CN=5-4=1(如图3所示).此时4433PMQN.所以45333BPBMPM.②如图6,当QC=QD时,由cosCHCCQ,可得5425258CQ.所以QN=CN-CQ=257488(如图2所示).此时4736PMQN.所以725366BPBMPM.③不存在DP=DF的情况.这是因为∠DFP≥∠DQP>∠DPQ(如图5,图6所示).图5图62.如图1,抛物线y=ax2+bx+c经过A(-1,0)、B(3,0)、C(0,3)三点,直线l是抛物线的对称轴.(1)求抛物线的函数关系式;(2)设点P是直线l上的一个动点,当△PAC的周长最小时,求点P的坐标;(3)在直线l上是否存在点M,使△MAC为等腰三角形,若存在,直接写出所有符合条件的点M的坐标;若不存在,请说明理由.图1解:(1)因为抛物线与x轴交于A(-1,0)、B(3,0)两点,设y=a(x+1)(x-3),代入点C(0,3),得-3a=3.解得a=-1.所以抛物线的函数关系式是y=-(x+1)(x-3)=-x2+2x+3.[键入文字](2)如图2,抛物线的对称轴是直线x=1.当点P落在线段BC上时,PA+PC最小,△PAC的周长最小.设抛物线的对称轴与x轴的交点为H.由BHPHBOCO,BO=CO,得PH=BH=2.所以点P的坐标为(1,2).图2(3)点M的坐标为(1,1)、(1,6)、(1,6)或(1,0).3.如图1,点A在x轴上,OA=4,将线段OA绕点O顺时针旋转120°至OB的位置.(1)求点B的坐标;(2)求经过A、O、B的抛物线的解析式;(3)在此抛物线的对称轴上,是否存在点P,使得以点P、O、B为顶点的三角形是等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.图1解:(1)如图2,过点B作BC⊥y轴,垂足为C.在Rt△OBC中,∠BOC=30°,OB=4,所以BC=2,23OC.所以点B的坐标为(2,23).(2)因为抛物线与x轴交于O、A(4,0),设抛物线的解析式为y=ax(x-4),代入点B(2,23),232(6)a.解得36a.所以抛物线的解析式为23323(4)663yxxxx.(3)抛物线的对称轴是直线x=2,设点P的坐标为(2,y).①当OP=OB=4时,OP2=16.所以4+y2=16.解得23y.当P在(2,23)时,B、O、P三点共线(如图2).②当BP=BO=4时,BP2=16.所以224(23)16y.解得1223yy.③当PB=PO时,PB2=PO2.所以22224(23)2yy.解得23y.综合①、②、③,点P的坐标为(2,23),如图2所示.图2图34.如图1,已知一次函数y=-x+7与正比例函数43yx的图象交于点A,且与x轴交于点B.(1)求点A和点B的坐标;(2)过点A作AC⊥y轴于点C,过点B作直线l//y轴.动点P从点O出发,以每秒1个单位长的速度,沿O—C—A的路线向点A运动;同时直线l从点B出发,以相同速度向左平移,在平移过程中,直线l交x轴于点R,交线段BA或线段AO于点Q.当点P到达点A时,点P和直线l都停止运动.在运动过程中,设动点P运动的时间为t秒.①当t为何值时,以A、P、R为顶点的三角形的面积为8?②是否存在以A、P、Q为顶点的三角形是等腰三角形?若存在,求t的值;若不存在,请说明理由.图1解:(1)解方程组7,4,3yxyx得3,4.xy所以点A的坐标是(3,4).令70yx,得7x.所以点B的坐标是(7,0).(2)①如图2,当P在OC上运动时,0≤t<4.由8APRACPPORCORASSSS△△△梯形,得1113+7)44(4)(7)8222tttt(.整理,得28120tt.解得t=2或t=6(舍去).如图3,当P在CA上运动时,△APR的最大面积为6.因此,当t=2时,以A、P、R为顶点的三角形的面积为8.[键入文字]图2图3图4②我们先讨论P在OC上运动时的情形,0≤t<4.如图1,在△AOB中,∠B=45°,∠AOB>45°,OB=7,42AB,所以OB>AB.因此∠OAB>∠AOB>∠B.如图4,点P由O向C运动的过程中,OP=BR=RQ,所以PQ//x轴.因此∠AQP=45°保持不变,∠PAQ越来越大,所以只存在∠APQ=∠AQP的情况.此时点A在PQ的垂直平分线上,OR=2CA=6.所以BR=1,t=1.我们再来讨论P在CA上运动时的情形,4≤t<7.在△APQ中,3cos5A为定值,7APt,5520333AQOAOQOAORt.如图5,当AP=AQ时,解方程520733tt,得418t.如图6,当QP=QA时,点Q在PA的垂直平分线上,AP=2(OR-OP).解方程72[(7)(4)]ttt,得5t.如7,当PA=PQ时,那么12cosAQAAP.因此2cosAQAPA.解方程52032(7)335tt,得22643t.综上所述,t=1或418或5或22643时,△APQ是等腰三角形.图5图6图75.如图1,在矩形ABCD中,AB=m(m是大于0的常数),BC=8,E为线段BC上的动点(不与B、C重合).连结DE,作EF⊥DE,EF与射线BA交于点F,设CE=x,BF=y.(1)求y关于x的函数关系式;(2)若m=8,求x为何值时,y的值最大,最大值是多少?(3)若12ym,要使△DEF为等腰三角形,m的值应为多少?图1解:(1)因为∠EDC与∠FEB都是∠DEC的余角,所以∠EDC=∠FEB.又因为∠C=∠B=90°,所以△DCE∽△EBF.因此DCEBCEBF,即8mxxy.整理,得y关于x的函数关系为218yxxmm.(2)如图2,当m=8时,2211(4)288yxxx.因此当x=4时,y取得最大值为2.(3)若12ym,那么21218xxmmm.整理,得28120xx.解得x=2或x=6.要使△DEF为等腰三角形,只存在ED=EF的情况.因为△DCE∽△EBF,所以CE=BF,即x=y.将x=y=2代入12ym,得m=6(如图3);将x=y=6代入12ym,得m=2(如图4).图2图3图46.如图1,在等腰梯形ABCD中,AD//BC,E是AB的中点,过点E作EF//BC交CD于点F,AB=4,BC=6,∠B=60°.(1)求点E到BC的距离;(2)点P为线段EF上的一个动点,过点P作PM⊥EF交BC于M,过M作MN//AB交折线ADC于N,连结PN,设EP=x.①当点N在线段AD上时(如图2),△PMN的形状是否发生改变?若不变,求出△PMN的周长;若改变,请说明理由;[键入文字]②当点N在线段DC上时(如图3),是否存在点P,使△PMN为等腰三角形?若存在,请求出所有满足条件的x的值;若不存在,请说明理由.图1图2图3解:(1)如图4,过点E作EG⊥BC于G.在Rt△BEG中,221ABBE,∠B=60°,所以160cosBEBG,360sinBEEG.所以点E到BC的距离为3.(2)因为AD//EF//BC,E是AB的中点,所以F是DC的中点.因此EF是梯形ABCD的中位线,EF=4.①如图4,当点N在线段AD上时,△PMN的形状不是否发生改变.过点N作NH⊥EF于H,设PH与NM交于点Q.在矩形EGMP中,EP=GM=x,PM=EG=3.在平行四边形BMQE中,BM=EQ=1+x.所以BG=PQ=1.因为PM与NH平行且相等,所以PH与NM互相平分,PH=2PQ=2.在Rt△PNH中,NH=3,PH=2,所以PN=7.在平行四边形ABMN中,MN=AB=4.因此△PMN的周长为3+7+4.图4图5②当点N在线段DC上时,△CMN恒为等边三角形.如图5,当PM=PN时,△PMC与△PNC关于直线PC对称,点P在∠DCB的平分线上.在Rt△PCM中,PM=3,∠PCM=30°,所以MC=3.此时M、P分别为BC、EF的中点,x=2.如图6,当MP=MN时,MP=MN=MC=3,x=GM=GC-MC=5-3.如图7,当NP=NM时,∠NMP=∠NPM=30°,所以∠PNM=120°.又因为∠FNM=120°,所以P与F重合.此时x=4.综上所述,当x=2或4或5-3时,△PMN为等腰三角形.图6图7图8
本文标题:2018年中考数学总复习动点问题练习(含答案)
链接地址:https://www.777doc.com/doc-4872641 .html