您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 小升初奥数—排列组合问题
小升初奥数—排列组合问题一、排列组合的应用【例1】小新、阿呆等七个同学照像,分别求出在下列条件下有多少种站法?(1)七个人排成一排;(2)七个人排成一排,小新必须站在中间.(3)七个人排成一排,小新、阿呆必须有一人站在中间.(4)七个人排成一排,小新、阿呆必须都站在两边.(5)七个人排成一排,小新、阿呆都没有站在边上.(6)七个人战成两排,前排三人,后排四人.(7)七个人战成两排,前排三人,后排四人.小新、阿呆不在同一排。【解析】(1)775040P(种)。(2)只需排其余6个人站剩下的6个位置.66720P(种).(3)先确定中间的位置站谁,冉排剩下的6个位置.2×66P=1440(种).(4)先排两边,再排剩下的5个位置,其中两边的小新和阿呆还可以互换位置.552240P(种).(5)先排两边,从除小新、阿呆之外的5个人中选2人,再排剩下的5个人,25552400PP(种).(6)七个人排成一排时,7个位置就是各不相同的.现在排成两排,不管前后排各有几个人,7个位置还是各不相同的,所以本题实质就是7个元素的全排列.775040P(种).(7)可以分为两类情况:“小新在前,阿呆在后”和“小新在前,阿呆在后”,两种情况是对等的,所以只要求出其中一种的排法数,再乘以2即可.4×3×55P×2=2880(种).排队问题,一般先考虑特殊情况再去全排列。【例2】某管理员忘记了自己小保险柜的密码数字,只记得是由四个非0数码组成,且四个数码之和是9,那么确保打开保险柜至少要试几次?【解析】四个非0数码之和等于9的组合有1,1,1,6;1,1,2,5;1,1,3,4;1,2,2,4;1,2,3,3;2,2,2,3六种。第一种中,可以组成多少个密码呢?只要考虑6的位置就可以了,6可以任意选择4个位置中的一个,其余位置放1,共有4种选择;第二种中,先考虑放2,有4种选择,再考虑5的位置,可以有3种选择,剩下的位置放1,共有4312(种)选择同样的方法,可以得出第三、四、五种都各有12种选择.最后一种,与第一种的情形相似,3的位置有4种选择,其余位置放2,共有4种选择.综上所述,由加法原理,一共可以组成412121212456(个)不同的四位数,即确保能打开保险柜至少要试56次.【例3】一种电子表在6时24分30秒时的显示为6:24:30,那么从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有多少个?【解析】设A:BCDE是满足题意的时刻,有A为8,B、D应从0,1,2,3,4,5这6个数字中选择两个不同的数字,所以有26P种选法,而C、E应从剩下的7个数字中选择两个不同的数字,所以有27P种选法,所以共有26P×27P=1260种选法。从8时到9时这段时间里,此表的5个数字都不相同的时刻一共有1260个。【例4】4名男生,5名女生,全体排成一行,问下列情形各有多少种不同的排法:⑴甲不在中间也不在两端;⑵甲、乙两人必须排在两端;⑶男、女生分别排在一起;⑷男女相间.【解析】⑴先排甲,9个位置除了中间和两端之外的6个位置都可以,有6种选择,剩下的8个人随意排,也就是8个元素全排列的问题,有888765432140320P(种)选择.由乘法原理,共有640320241920(种)排法.⑵甲、乙先排,有22212P(种)排法;剩下的7个人随意排,有7776543215040P(种)排法.由乘法原理,共有2504010080(种)排法.⑶分别把男生、女生看成一个整体进行排列,有22212P(种)不同排列方法,再分别对男生、女生内部进行排列,分别是4个元素与5个元素的全排列问题,分别有44432124P(种)和5554321120P(种)排法.由乘法原理,共有2241205760(种)排法.⑷先排4名男生,有44432124P(种)排法,再把5名女生排到5个空档中,有5554321120P(种)排法.由乘法原理,一共有241202880(种)排法。【例5】一台晚会上有6个演唱节目和4个舞蹈节目.求:⑴当4个舞蹈节目要排在一起时,有多少不同的安排节目的顺序?⑵当要求每2个舞蹈节目之间至少安排1个演唱节目时,一共有多少不同的安排节目的顺序?【解析】⑴先将4个舞蹈节目看成1个节目,与6个演唱节目一起排,则是7个元素全排列的问题,有777!76543215040P(种)方法.第二步再排4个舞蹈节目,也就是4个舞蹈节目全排列的问题,有444!432124P(种)方法.根据乘法原理,一共有504024120960(种)方法.⑵首先将6个演唱节目排成一列(如下图中的“□”),是6个元素全排列的问题,一共有666!654321720P(种)方法.×□×□×□×□×□×□×第二步,再将4个舞蹈节目排在一头一尾或2个演唱节目之间(即上图中“×”的位置),这相当于从7个“×”中选4个来排,一共有477654840P(种)方法.根据乘法原理,一共有720840604800(种)方法。【例6】⑴从1,2,…,8中任取3个数组成无重复数字的三位数,共有多少个?(只要求列式)⑵从8位候选人中任选三位分别任团支书,组织委员,宣传委员,共有多少种不同的选法?⑶3位同学坐8个座位,每个座位坐1人,共有几种坐法?⑷8个人坐3个座位,每个座位坐1人,共有多少种坐法?⑸一火车站有8股车道,停放3列火车,有多少种不同的停放方法?⑹8种不同的菜籽,任选3种种在不同土质的三块土地上,有多少种不同的种法?【解析】⑴按顺序,有百位、十位、个位三个位置,8个数字(8个元素)取出3个往上排,有38P种.⑵3种职务3个位置,从8位候选人(8个元素)任取3位往上排,有38P种.⑶3位同学看成是三个位置,任取8个座位号(8个元素)中的3个往上排(座号找人),每确定一种号码即对应一种坐法,有38P种.⑷3个坐位排号1,2,3三个位置,从8人中任取3个往上排(人找座位),有38P种.⑸3列火车编为1,2,3号,从8股车道中任取3股往上排,共有38P种.⑹土地编1,2,3号,从8种菜籽中任选3种往上排,有38P种。【例7】某校举行男生乒乓球比赛,比赛分成3个阶段进行,第一阶段:将参加比赛的48名选手分成8个小组,每组6人,分别进行单循环赛;第二阶段:将8个小组产生的前2名共16人再分成4个小组,每组4人,分别进行单循环赛;第三阶段:由4个小组产生的4个第1名进行2场半决赛和2场决赛,确定1至4名的名次.问:整个赛程一共需要进行多少场比赛?【解析】第一阶段中,每个小组内部的6个人每2人要赛一场,组内赛26651521C场,共8个小组,有158120场;第二阶段中,每个小组内部4人中每2人赛一场,组内赛2443621C场,共4个小组,有6424场;第三阶段赛224场.根据加法原理,整个赛程一共有120244148场比赛。【例8】8个人站队,冬冬必须站在小悦和阿奇的中间(不一定相邻),小慧和大智不能相邻,小光和大亮必须相邻,满足要求的站法一共有多少种?【解析】冬冬要站在小悦和阿奇的中间,就意味着只要为这三个人选定了三个位置,中间的位置就一定要留给冬冬,而两边的位置可以任意地分配给小悦和阿奇.小慧和大智不能相邻的互补事件是小慧和大智必须相邻小光和大亮必须相邻,则可以将两人捆绑考虑只满足第一、三个条件的站法总数为:3212372423PPP3360CC(种)同时满足第一、三个条件,满足小慧和大智必须相邻的站法总数为:3222262322PPPP960C(种)因此同时满足三个条件的站法总数为:33609602400(种)。【例9】某池塘中有ABC、、三只游船,A船可乘坐3人,B船可乘坐2人,C船可乘坐1人,今有3个成人和2个儿童要分乘这些游船,为安全起见,有儿童乘坐的游船上必须至少有个成人陪同,那么他们5人乘坐这三支游船的所有安全乘船方法共有多少种?【解析】由于有儿童乘坐的游船上必须至少有1个成人陪同,所以儿童不能乘坐C船.⑴若这5人都不乘坐C船,则恰好坐满AB、两船,①若两个儿童在同一条船上,只能在A船上,此时A船上还必须有1个成人,有133C种方法;②若两个儿童不在同一条船上,即分别在AB、两船上,则B船上有1个儿童和1个成人,1个儿童有122C种选择,1个成人有133C种选择,所以有236种方法.故5人都不乘坐C船有369种安全方法;⑵若这5人中有1人乘坐C船,这个人必定是个成人,有133C种选择.其余的2个成人与2个儿童,①若两个儿童在同一条船上,只能在A船上,此时A船上还必须有1个成人,有122C种方法,所以此时有326种方法;②若两个儿童不在同一条船上,那么B船上有1个儿童和1个成人,此时1个儿童和1个成人均有122C种选择,所以此种情况下有32212种方法;故5人中有1人乘坐C船有61218种安全方法.所以,共有91827种安全乘法.【例10】从10名男生,8名女生中选出8人参加游泳比赛.在下列条件下,分别有多少种选法?⑴恰有3名女生入选;⑵至少有两名女生入选;⑶某两名女生,某两名男生必须入选;⑷某两名女生,某两名男生不能同时入选;⑸某两名女生,某两名男生最多入选两人。【解析】⑴恰有3名女生入选,说明男生有5人入选,应为3581014112CC种;⑵要求至少两名女生人选,那么“只有一名女生入选”和“没有女生入选”都不符合要求.运用包含与排除的方法,从所有可能的选法中减去不符合要求的情况:8871181010843758CCCC;⑶4人必须入选,则从剩下的14人中再选出另外4人,有4141001C种;⑷从所有的选法818C种中减去这4个人同时入选的414C种:84181443758100142757CC.⑸分三类情况:4人无人入选;4人仅有1人入选;4人中有2人入选,共:817261441441434749CCCCC。【例11】在10名学生中,有5人会装电脑,有3人会安装音响设备,其余2人既会安装电脑,又会安装音响设备,今选派由6人组成的安装小组,组内安装电脑要3人,安装音响设备要3人,共有多少种不同的选人方案?【解析】按具有双项技术的学生分类:⑴两人都不选派,有3554310321C(种)选派方法;⑵两人中选派1人,有2种选法.而针对此人的任务又分两类:若此人要安装电脑,则还需2人安装电脑,有25541021C(种)选法,而另外会安装音响设备的3人全选派上,只有1种选法.由乘法原理,有10110(种)选法;若此人安装音响设备,则还需从3人中选2人安装音响设备,有2332321C(种)选法,需从5人中选3人安装电脑,有3554310321C(种)选法.由乘法原理,有31030(种)选法.根据加法原理,有103040(种)选法;综上所述,一共有24080(种)选派方法.⑶两人全派,针对两人的任务可分类讨论如下:①两人全安装电脑,则还需要从5人中选1人安装电脑,另外会安装音响设备的3人全选上安装音响设备,有515(种)选派方案;②两人一个安装电脑,一个安装音响设备,有22535432602121CC(种)选派方案;③两人全安装音响设备,有355433330321C(种)选派方案.根据加法原理,共有5603095(种)选派方案.综合以上所述,符合条件的方案一共有108095185(种).【例12】有11名外语翻译人员,其中5名是英语翻译员,4名是日语翻译员,另外两名英语、日语都精通.从中找出8人,使他们组成两个翻译小组,其中4人翻译英文,另4人翻译日文,这两个小组能同时工作.问这样的分配名单共可以开出多少张?【解析】针对两名英语、日语都精通人员(以下称多面手)的参考情况分成三类:
本文标题:小升初奥数—排列组合问题
链接地址:https://www.777doc.com/doc-4876425 .html