您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 28.1锐角三角函数(第一课时)课件ppt
问题为了绿化荒山,某地打算从位于山脚下的机井房沿着山坡铺设水管,在山坡上修建一座扬水站,对坡面的绿地进行喷灌.现测得斜坡与水平面所成角的度数是30°,为使出水口的高度为35m,那么需要准备多长的水管?这个问题可以归结为,在Rt△ABC中,∠C=90°,∠A=30°,BC=35m,求AB根据“在直角三角形中,30°角所对的边等于斜边的一半”,即12ABCAB的对边斜边可得AB=2BC=70m,也就是说,需要准备70m长的水管.ABC分析:情境探究在上面的问题中,如果使出水口的高度为50m,那么需要准备多长的水管?结论:在一个直角三角形中,如果一个锐角等于30°,那么不管三角形的大小如何,这个角的对边与斜边的比值都等于21ABC50m30m,21'''ABCBA斜边的对边B'C'AB'=2B'C'=2×50=100在Rt△ABC中,∠C=90°,由于∠A=45°,所以Rt△ABC是等腰直角三角形,由勾股定理得22222BCBCACABBCAB222212BCBCABBC因此即在直角三角形中,当一个锐角等于45°时,不管这个直角三角形的大小如何,这个角的对边与斜边的比都等于22如图,任意画一个Rt△ABC,使∠C=90°,∠A=45°,计算∠A的对边与斜边的比,你能得出什么结论?ABBCABC综上可知,在一个Rt△ABC中,∠C=90°,当∠A=30°时,∠A的对边与斜边的比都等于,是一个固定值;当∠A=45°时,∠A的对边与斜边的比都等于,也是一个固定值.22一般地,当∠A取其他一定度数的锐角时,它的对边与斜边的比是否也是一个固定值?21在图中,由于∠C=∠C'=90°,∠A=∠A'=α,所以Rt△ABC∽Rt△A'B'C'''''BAABCBBC''''BACBABBC这就是说,在直角三角形中,当锐角A的度数一定时,不管三角形的大小如何,∠A的对边与斜边的比也是一个固定值.任意画Rt△ABC和Rt△A'B'C',使得∠C=∠C'=90°,∠A=∠A'=α,那么与有什么关系.你能解释一下吗?ABBC''''BACB探究ABCA'B'C'如图,在Rt△ABC中,∠C=90°,我们把锐角A的对边与斜边的比叫做∠A的正弦(sine),记住sinA即caAA斜边的对边sin例如,当∠A=30°时,我们有2130sinsinA当∠A=45°时,我们有2245sinsinAABCcab对边斜边在图中∠A的对边记作a∠B的对边记作b∠C的对边记作c正弦函数例1如图,在Rt△ABC中,∠C=90°,求sinA和sinB的值.解:(1)在Rt△ABC中,5342222BCACAB因此53sinABBCA54sinABACB(2)在Rt△ABC中,135sinABBCA125132222BCABAC因此1312sinABACBABCABC3413求sinA就是要确定∠A的对边与斜边的比;求sinB就是要确定∠B的对边与斜边的比例题示范5根据下图,求sinA和sinB的值.ABC35练习求sinA就是要确定∠A的对边与斜边的比;求sinB就是要确定∠B的对边与斜边的比解:(1)在Rt△ABC中,22225334ABACBC因此3334sin3434BCAAB5534sin1734ACBAB根据下图,求sinA和sinB的值.ABC125练习求sinA就是要确定∠A的对边与斜边的比;求sinB就是要确定∠B的对边与斜边的比解:(1)在Rt△ABC中,2222125119BCABAC因此119sin12BCAAB5sin12ACBAB根据下图,求sinB的值.ABCn练习求sinA就是要确定∠A的对边与斜边的比;求sinB就是要确定∠B的对边与斜边的比解:(1)在Rt△ABC中,2222ABBCACmn因此222222sinACnnmnBABmnmnm练习如图,Rt△ABC中,∠C=90度,CD⊥AB,图中sinB可由哪两条线段比求得。DCBA解:在Rt△ABC中,sinACBAB在Rt△BCD中,sinCDBBC因为∠B=∠ACD,所以sinsinADBACDAC小结如图,Rt△ABC中,直角边AC、BC小于斜边AB,所以0<sinA<1,0<sinB<1,sinBCAABsinACBAB如果∠A<∠B,则BC<AC,那么0<sinA<sinB<1ABC<1<1三角函数符号最早的使用1949年至今,由于受前苏联教材的影响,我国数学书籍中“cot”改为“ctg”,“tan”改为“tg”,其余四个符号均未变。这就是为什么我国市场上流行的进口函数计算器上有“tan”而无“tg”按键的缘故。小资料sine(正弦)一词始于阿拉伯人雷基奥蒙坦。他是十五世纪西欧数学界的领导人物,他于1464年完成的著作《论各种三角形》,1533年开始发行,这是一本纯三角学的书,使三角学脱离天文学,独立成为一门数学分科。Cosine(余弦)及cotangent(余切)为英国人根日尔首先使用,最早在1620年伦敦出版的他所著的《炮兵测量学》中出现。Secant(正割)及tangent(正切)为丹麦数学家托马斯·劳克首创,最早见于他的《圆几何学》一书中。Cosecant(余割)一词为锐梯卡斯所创。最早见于他1596年出版的《宫廷乐章》一书。1626年,阿尔贝特·格洛德最早推出简写的三角符号:“sin”,“tan”,“sec”.1675年,英国人奥屈特最早推出余下的简写三角符号:“cos”,“cot”,“csc”。便直到1748年,经过数学家欧拉的引用后,才逐渐通用起来。通过对本节课的学习,你有哪些收获呢?你还有什么疑惑吗?
本文标题:28.1锐角三角函数(第一课时)课件ppt
链接地址:https://www.777doc.com/doc-4876540 .html