您好,欢迎访问三七文档
动能定理知识梳理一、动能(一)动能的表达式1.定义:物体由于运动而具有的能叫做动能.2.公式:Ek=mv2,动能的单位是焦耳.说明:(1)动能是状态量,物体的运动状态一定,其动能就有确定的值,与物体是否受力无关.(2)动能是标量,且动能恒为正值,动能与物体的速度方向无关.一个物体,不论其速度的方向如何,只要速度的大小相等,该物体具有的动能就相等.(3)像所有的能量一样,动能也是相对的,同一物体,对不同的参考系会有不同的动能.没有特别指明时,都是以地面为参考系相对地面的动能.(二)动能定理1.内容:力在一个过程中对物体所做的功,等于物体在这个过程中动能的变化.2.表达式:W=E-E,W是外力所做的总功,E、E分别为初末状态的动能.若初、末速度分别为v1、v2,则E=mv21,E=mv.3.物理意义:动能定理揭示了外力对物体所做的总功与物体动能变化之间的关系,即外力对物体做的总功,对应着物体动能的变化,变化的大小由做功的多少来度量.动能定理的实质说明了功和能之间的密切关系,即做功的过程是能量转化的过程.利用动能定理来求解变力所做的功通常有以下两种情况:①如果物体只受到一个变力的作用,那么:W=Ek2-Ek1.只要求出做功过程中物体的动能变化量ΔEk,也就等于知道了这个过程中变力所做的功.②如果物体同时受到几个力作用,但是其中只有一个力F1是变力,其他的力都是恒力,则可以先用恒力做功的公式求出这几个恒力所做的功,然后再运用动能定理来间接求变力做的功:W1+W其他=ΔEk.可见应把变力所做的功包括在上述动能定理的方程中.③注意以下两点:122k1k1k1k1k122k1222a.变力的功只能用表示功的符号W来表示,一般不能用力和位移的乘积来表示.b.变力做功,可借助动能定理求解,动能中的速度有时也可以用分速度来表示.4.理解动能定理(1)力(合力)在一个过程中对物体所做的功,等于物体在这个过程中动能的变化。这就是动能定理,其数学表达式为W=Ek2-Ek1。通常,动能定理数学表达式中的W有两种表述:一是每个力单独对物体做功的代数和,二是合力对物体所做的功。这样,动能定理亦相应地有两种不同的表述:①外力对物体所做功的代数和等于物体动能的变化。②合外力对物体所做的功等于物体动能的变化。(三)应用动能定理1、动能定理应用的基本步骤应用动能定理涉及一个过程,两个状态.所谓一个过程是指做功过程,应明确该过程各外力所做的总功;两个状态是指初末两个状态的动能.动能定理应用的基本步骤是:①选取研究对象,明确并分析运动过程.②分析受力及各力做功的情况,受哪些力?每个力是否做功?在哪段位移过程中做功?正功?负功?做多少功?求出代数和.③明确过程始末状态的动能Ek1及EK2④列方程W=EK2一Ek1,必要时注意分析题目的潜在条件,补充方程进行求解.2、应用动能定理的优越性(1)由于动能定理反映的是物体两个状态的动能变化与其合力所做功的量值关系,所以对由初始状态到终止状态这一过程中物体运动性质、运动轨迹、做功的力是恒力还是变力等诸多问题不必加以追究,就是说应用动能定理不受这些问题的限制.(2)一般来说,用牛顿第二定律和运动学知识求解的问题,用动能定理也可以求解,而且往往用动能定理求解简捷.可是,有些用动能定理能够求解的问题,应用牛顿第二定律和运动学知识却无法求解.可以说,熟练地应用动能定理求解问题,是一种高层次的思维和方法,应该增强用动能定理解题的主动意识.(3)用动能定理可求变力所做的功.在某些问题中,由于力F的大小、方向的变化,不能直接用W=Fscosα求出变力做功的值,但可由动能定理求解.二、重力势能(1)定义:物体由于被举高而具有的能量叫做重力势能.(2)表达式:pEmgh,其中h是物体的重心到参考平面(即高度取为零,零势能面)的高度.在参考面以上,0h;在参考面以下,0h.重力势能是状态量,是标量,可正可负.单位:同功的单位相同,国际单位制中为焦耳,符号为J.(3)重力势能的特点①重力势能的相对性:重力势能pEmgh是相对的,为了确定物体的重力势能,预先规定一个水平面的高度为零,处于此平面的物体重力势能为零,此平面叫做参考平面,也叫做零势面.选择哪个水平面为参考平面,可视研究问题的方便而定,通常选择地面作为参考平面.参考平面不同,重力势能值不同,因而重力势能具有相对性.②重力势能的变化量是绝对的,具有绝对性:我们所关心的往往不是物体具有多少重力势能,而是重力势能的变化量,虽然重力势能具有相对性,但重力势能的变化pEmgh却是绝对的,与参考平面的选取无关.③系统性:重力势能是地球与物体共同具有的,是由地球和地面上物体的相对位置决定的,即2pGMmEmghhR.没有地球,物体的重力势能就不存在.(4)重力做功的特点①由功能关系GpWE可知重力所做的功只跟初位置的高度1h和末位置的高度2h有关,跟物体运动的路径无关.只要起点和终点的位置相同,不论是沿着直线路径由起点到终点,或是沿着曲线路径由起点到终点,做功结果均相同.②重力做功只与物体初、末位置的高度差有关,与路径无关.③重力做功可以使物体的重力势能发生变化.(5)重力势能的变化与重力做功的关系重力对物体做多少正功,物体的重力势能就减少多少,重力对物体做多少负功,物体的重力势能就增加多少.即GpWE.三、弹性势能(1)定义:物体由于发生弹性形变,各部分之间存在着弹性力的相互作用而具有的势能叫做“弹性势能”.(2)理解:①弹性势能是状态量,标量,单位是焦耳.②确定弹性势能的大小需选取零势能的状态,一般选取弹簧未发生任何形变而处于自由状态的情况下其弹性势能为零,被压缩或伸长的弹簧具有的弹性势能等于弹簧的劲度系数与弹簧长度改变量x的平方乘积的一半,即212pEkx.③弹力对物体做功等于弹性势能增量的负值,即弹力所做的功只与弹簧在初状态和末状态的伸长量有关,而与弹簧形变过程无关.④弹性势能是以弹力的存在为前提,所以弹性势能是在发生弹性形变时,各部分之间有弹性作用的物体所具有的.如果两物体相互作用都发生形变,那么每一物体都有弹性势能,总弹性势能为二者之和.⑤动能、重力势能和弹性势能之间可以相互转化.【例1】图中ABCD是一条长轨道,其中AB段是倾角为θ的斜面,CD段是水平的,BC是与AB和CD都相切的一小段圆弧,其长度可以略去不计.一质量为m的小滑块在A点从静止状态释放,沿轨道滑下,最后停在D点,A点和D点的位置如图所示,现用一沿轨道方向的力推滑块,使它缓缓地由D点推回到A点,设滑块与轨道间的动摩擦系数为μ,则推力对滑块做的功等于()A.mghB.2mghC.()sinhmgsD.cosmgsmgsh变式1如图所示,AB是倾角为的粗糙直轨道,BCD是光滑的圆弧轨道,AB恰好在B点与圆弧相切,圆弧的半径为R.一个质量为m的物体(可以看做质点)从直轨道上的P点由静止释放,结果它能在两轨道间做往返运动.已知P点与圆弧的圆心O等高,物体与直轨道AB间的动摩擦因数为,求:(1)物体做往返运动的整个过程中,在AB轨道上通过的总路程.(2)最终当物体通过圆弧最低点E时,对圆弧轨道的压力.【例2】如图长为l的均质链条,部分置于水平面上,另一部分自然下垂,已知链条与水平面间静摩擦系数为μ0,滑动摩擦系数为μ.求:(1)满足什么条件时,链条将开始滑动?(2)若下垂部分长度为b时,链条自静止开始滑动,当链条末端刚刚滑离桌面时,其速度等于多少?变式:2、如图所示,总长为L的光滑匀质铁链跨过一个光滑的轻小滑轮,开始时底端相齐,当略有扰动时其一端下落,则铁链刚脱离滑轮的瞬间的速度多大?变式3、如图所示,一粗细均匀的U型管内装有同种液体且竖直放置,右管口用盖板A封闭一部分气体,左管口开口,两液面高度差为h,U型管中液柱总长度为4h.现拿去盖板,液柱开始流动,当两侧液柱刚好相齐时右侧液面下降的速度大小为多少?【例3】轻杆AB长2L,A端连在固定轴上,B端固定一个质量为2m的小球,中点C固定一个质量为m的小球.AB杆可以绕A端在竖直平面内自由转动.现将杆置于水平位置,如图所示,然后静止释放,不计各处摩擦与空气阻力,试求:(1)AB杆转到竖直位置瞬时,角速度多大?(2)AB杆转到竖直位置的过程中,B端小球的机械能增量多大?变式4、如图所示,轻杆两端各系一质量均为m的小球A、B,轻杆可绕O的光滑水平轴在竖直面内转动,A球到O的距离为L1,B球到O的距离为L2,且L1>L2,轻杆水平时无初速释放小球,不计空气阻力,求杆竖直时两球的角速度为______.例4、如图所示,位于竖直平面内的光滑轨道,由一段斜的直轨道与之相切的圆形轨道连接而成,圆形轨道的半径为R。一质量为m的小物块(视为质点)从斜轨道上某处由静止开始下滑,然后沿圆形轨道运动。(g为重力加速度)(1)要使物块能恰好通过圆轨道最高点,求物块初始位置相对于圆形轨道底部的高度h多大;(2)要求物块能通过圆轨道最高点,且在最高点与轨道间的压力不能超过5mg。求物块初始位置相对于圆形轨道底部的高度h的取值范围。变式5、如图所示,一个半径R=1.0m的圆弧形光滑轨道固定在竖直平面内,轨道的一个端点B和圆心O的连线与竖直方向夹角θ=60°,C为轨道最低点,D为轨道最高点.一个质量m=0.50kg的小球(视为质点)从空中A点以v0=4.0m/s的速度水平抛出,恰好从轨道的B端沿切线方向进入轨道.重力加速度g取10m/s2.试求:(1)小球抛出点A距圆弧轨道B端的高度h.(2)小球经过轨道最低点C时对轨道的压力FC.(3)小球能否到达轨道最高点D?若能到达,试求对D点的压力FD.若不能到达,试说明理由.【例4】如图所示,固定的光滑竖直杆上套着一个滑块,用轻绳系着滑块绕过光滑的定滑轮,以方向不变、大小恒定的拉力F拉绳,使滑块从A点由静止开始上升.若从A点上升至B点和从B点上升至C点的过程中拉力F做的功分别为12WW、,滑块经BC、两点时的动能分别为kBkCEE、,图中ABBC,则一定有()A.12WWB.12WWC.kBkCEED.kBkCEEmRhABC【例5】如图所示,一物体从高为H的斜面顶端由静止开始下滑,滑上与该斜面相连的一光滑曲面后又返回斜面,在斜面上能上升到的最大高度为12H.若不考虑物体经过斜面底端转折处的能量损失,则当物体再一次滑回斜面时上升的最大高度为()A.0B.14HC.H与12H之间D.0与14H之间【例6】如图所示,DO是水平面,AB是斜面,初速度为0v的物体从D点出发沿DBA滑动到顶点A时速度刚好为零,如果斜面改为AC,让该物体从D点出发沿DCA滑动到A点且速度刚好为零,则物体具有的初速度(已知物体与路面之间的动摩擦因数处处相同且不为零,物体过B(或C)点时无机械能损失)()A.大于0vB.等于0vC.小于0vD.取决于斜面的倾角【例7】以初速度0v竖直向上抛出一质量为的小物体.假定物块所受的空气阻力大小不变.已知重力加速度为,则物体上升的最大高度和返回到原抛出点的速率分别为()A.和B.和C.和D.和【例8】如图所示,物体以100J的初动能从斜面底端沿斜面向上运动,当它向上通过斜面上某一点M时,其动能减少了80J,克服摩擦力做功32J,则物体返回到斜面底端时的动能为()A.20JB.48JC.60JD.68Jmfg202(1)vfgmg0mgfvmgf202(1)vfgmg0mgvmgf12xx0mgfvmgf2022(1)vfgmg0mgvmgf【例9】子弹以某速度击中静止在光滑水平面上的木块,当子弹进入木块的深度为x时,木块相对光滑水平面移动的距离为2x,则木块获得的动能和子弹损失的动能之比为()A.1:1B.1:2C.1:3D.2:1【例10】运动员从悬停在空中的直升机上跳伞,伞打开前可看作是自由落体运动,开伞后减速下降,最后匀速下落.如果用h表示下落高度、t表示下落的时间、F表示人受到的合外力、E表示人的机械能、Ep表示人的重力势能、v表示人下落的速度.在整个过程中,下列图象可能符合
本文标题:动能定理
链接地址:https://www.777doc.com/doc-4882481 .html