您好,欢迎访问三七文档
当前位置:首页 > 医学/心理学 > 医学试题/课件 > 三垂线定理及其逆定理的练习课教案
三垂线定理及其逆定理的练习课教案教学目标1.进一步理解、记忆并应用三垂线定理及其逆定理;2.理解公式cosθ1·cosθ2=cosθ的证明及其初步应用;(课本第122页第3题)3.理解正方体的体对角线与其异面的面对角线互相垂直及其应用;4.了解课本第33页第11题.教学重点和难点教学的重点是进一步掌握三垂线定理及其逆定理并应用它们来解有关的题.教学的难点是在讲公式cosθ1·cosθ2=cosθ应用时比较θ2与θ的大小.教学设计过程师:上一节课我们讲了三垂线定理及其逆定理的证明并初步应用了这两个定理来解一些有关的题.今天我们要进一步应用这两个定理来解一些有关的题,先看例1.例1如图1,AB和平面α所成的角是θ1;AC在平面α内,BB′⊥平面α于B′,AC和AB的射影AB′成角θ2,设∠BAC=θ.求证:cosθ1·cosθ2=cosθ.师:这是要证明三个角θ1,θ2和θ的余弦的关系,θ1已经在直角△ABB′中,我们能否先作出两个直角三角形分别使θ2和θ是这两个直角三角形中的锐角.生:作B′D⊥AC于D,连BD,则BD⊥AC于D.这时θ2是直角△B′DA中的一个锐角,θ是直角△ABD中的一个锐角.师:刚才的表述是应用三垂线定理及其逆定理时常常使用的“套话”,我们一定要很好理解并能熟练地应用.现在已经知道θ1、θ2和θ分别在三个直角三角形中,根据三角函数中的余弦的定义分别写出这三个角的余弦,再来证明这公式.师:这个公式的证明是利用余弦的定义把它们转化成邻边与斜边的比,为此要先作出直角三角形,为了作出直角三角形我们应用了三垂线定理.当然也可用它的逆定理.这个公式是在课本第121页总复习参考题中的第3题.我们为什么要提前讲这个公式呢?讲这个公式的目的是为了用这个公式,因为在解许多有关题时都要用到这公式.那我们要问在什么条件下可用这个公式?生:因为θ1是斜线AB与平面α所成的角,所以只有当图形中出现斜线与平面所成的角时,才有可能考虑用这公式.师:为了在使用这个公式时方便、易记,我们规定θ1表示斜线与平面所成的角,θ2是平面内过斜足的一条射线与斜线射影所成的角,θ是这条射线与斜线所成的角.下面我们来研究一下这个公式的应用.应用这个公式可解决两类问题.第一是求值.即已知这公式中的两个角,即可求出第三个角或其余弦值.例如:θ=60°,这时θ2<θ;当θ1=45°,θ2=135°时,cosθ=cos45°·cos135°=第二是比较θ2与θ的大小.因为我们已经规定θ1是斜线与平面所成的角,一定有0°<θ1<90°,它的大小不变,为了比较θ2与θ的大小,下面分三种情况进行讨论.(1)θ2=90°,因为θ2=90°,所以cosθ2=0,因此cosθ=cosθ1·cosθ2=0,故θ=90°.当θ=90°时,我们也可以证明θ2=90°.一条直线如果和斜线的射影垂直,那么它就和斜线垂直.这就是三垂线定理.一条直线如果和斜线垂直,那么它就和斜线的射影垂直.这就是三垂线定理的逆定理.所以,我们可以这样说,这个公式是三垂线定理及其逆定理的一般情况,而三垂线定理及其逆定理是这公式的特殊情况.现在我们来研究在θ2是锐角时,θ2与θ的大小.(2)0°<θ2<90°.师:在这个条件下,我们怎样来比较θ2与θ的大小?生:因为0°<θ1<90°,所以0<cosθ1<1,又因为0°<θ2<90°,所以0<cosθ2<1.又因为cosθ=cosθ1·cosθ2,所以0<cosθ1<1,而且cosθ=cosθ1·cosθ2<cosθ2,在锐角条件下,余弦函数值大的它所对应的角小.所以θ2<θ.师:现在我们来讨论当θ2是钝角时,θ2与θ的大小.(3)90°<θ2<180°.在这个条件下,我们不再用公式cosθ1·cosθ2=cosθ做理论上的证明来比较θ2与θ的大小,而是一起来看模型(或图形).我们假设θ2的邻补角为θ′2,θ的邻补角为θ′,即θ2+θ′2=180°,θ+θ′=180°.在模型(或图形)中我们可以看出当θ2是钝角时,θ也是钝角,所以它们的两个邻补角θ′2和θ′都是锐角,由对第二种情况的讨论我们知道θ′2<θ′.由等量减不等量减去小的大于减去大的,所以由θ2=180°-θ′2,θ=180°-θ′,可得θ2>θ.根据以上讨论现在小结如下:当θ2=90°时,θ=θ2=90°,它们都是直角.当0°<θ2<90°时,θ2<θ,它们都是锐角;当90°<θ2<180°时,θ2>θ,它们都是钝角.关于公式cosθ1·cosθ2=cosθ的应用,今后还要随着课程的进展而反复提到.现在我们来看例2.例2如图2,在正方体ABCD-A1B1C1D1中,求证:(1)A1C⊥平面C1DB于G;(2)垂足G为正△C1DB的中心;(3)A1G=2GC.师:我们先来证明第(1)问.要证直线与平面垂直即要证什么?生:要证A1C与平面C1DB内两条相交的直线垂直.师:我们先证A1C为什么与DB垂直?生:连AC,对平面ABCD来说,A1A是垂线,A1C是斜线,AC是A1C在平面ABCD上的射影,因为AC⊥DB(正方形的性质),所以A1C⊥DB.(三垂线定理)同理可证A1C⊥BC1.因为A1C⊥平面C1DB(直线与平面垂直的判定理)(在证A1C⊥BC1时,根据情况可详、可略,如果学生对应用三垂线定理还不太熟悉,则可让学生把这证明过程再叙述一遍,因为这时是对平面B1BCC1来说,A1B1是垂线,A1C是斜线,B1C是A1C在平面B1BCC1上的射影,由B1C⊥BC1,得A1C⊥BC1)师:现在来证第(2)问,垂足G为什么是正△C1DB的中心?生:因为A1B=A1C1=A1D,所以BG=GC1=DG,故G是正△C1DB的外心,正三角形四心合一,所以G是正△C1DB的中心.师:现在来证第(3)问,我们注意看正方体的对角面A1ACC1,在这对角面内有没有相似三角形?生:在正方体的对角面A1ACC1内,由平面几何可知△A1GC1∽△OGC,且A1C1∶OC=A1G∶GC,所以A1G∶GC=2∶1,因此A1G=2GC.师:例2是在正方体的体对角线与其异面的面对角线互相垂直引申而来,而例2也是一个基本的题型,对于以后证有关综合题型时很有用.所以对例2的证明思路和有关结论,尽可能的理解、记住.现在我们来看例3.例3如图3,已知:Rt△ABC在平面α内,PC⊥平面α于C,D为斜边AB的中点,CA=6,CB=8,PC=12.求:(1)P,D两点间的距离;(2)P点到斜边AB的距离.师:现在先来解第(1)问,求P,D两点间的距离.师:现在我们来解第(2)问,求P点到AB边的距离.生:作PE⊥AB于E,连CE则CE⊥AB.(三垂线定理的逆定理)PE就是P点到AB边的距离.师:要求PE就要先求CE,CE是直角三角形ABC斜边上的高,已知直角三角形的三边如何求它斜边上的高呢?生:可用等积式CE·AB=AC·CB,即斜边上的高与斜边的乘积等于两直角边的乘积.师:这个等积式是怎样证明的?生:有两种证法.因CE·AB是Rt△ABC面积的二倍,而AC·CB也是Rt△ABC面积的二倍,所以它们相等;也可用△BCE∽△ABC,对应边成比例推出这个等积式.师:这个等积式很有用,根据这个等积式,我们可以由直角三角形的三边求出斜边上的高,这个等积式以后在求有关距离问题时会常常用到,所以要理解、记住、会用.现在就利用这等积式先求CE,再求PE.师:通过这一题我们要区分两种不同的距离概念及求法;在求点到直线距离时,经常要用到三垂线定理或其道定理;在求直角三角形斜边上的高时会利用上述的等积式来求斜边上的高.现在我们来看例4.例4如图4,已知:∠BAC在平面α内,POα,PO⊥平面α于O.如果∠PAB=∠PAC.求证:∠BAO=∠CAO.(这个例题就是课本第32页习题四中的第11题.这个题也可以放在讲完课本第30页例1以后讲.不论在讲课本第30页例1,还是在讲这个例时,都应先用模型作演示,使学生在观察模型后,得出相关的结论,然后再进行理论上的证明,这样使学生对问题理解得具体、实在,因而效果也较好)师:当我们观察了模型后,很容易就猜想到了结论.即斜线PA在平面α上的射线是∠BAC的角平分线所在的直线,现在想一想可以有几种证法?生:作OD⊥AB于D,作OE⊥AC于E,连PD,PE,则PD⊥AB,PE⊥AC.所以Rt△PAD≌Rt△PAE,因此PD=PE,故OD=OE,所以∠BAO=∠CAO.师:今天我们讲了公式cosθ1·cosθ2=cosθ.能否用这公式来证明这题.(利用这公式来证明这个题,完全是由学生想到的,当然如果有的班学生成绩较差,思路不活,也可做些必要的提示)生:因为∠PAO是斜线与平面α所成的角,所以可以考虑用公式cosθ1·cosθ2=cosθ.∠PAO相当于θ1;∠PAB=∠PAC它们都相当于θ,由公式可得θ2=θ′2,即∠BAO=∠CAO.师:今天我们是应用三垂线定理及其逆定理来解这四个例题.例1、例2、例4是三个基本题.对这三个题一定要会证、记住、会用.关于这三个题的应用,以后还会在讲课过程中反复出现.在高考题中也曾用到.作业课本第33页第13题.补充题1.已知:∠BSC=90°,直线SA∩平面BSC=S.∠ASB=∠ASC=60°,求:SA和平面BSC所成角的大小.[45°]2.已知:AB是平面α的一斜线,B为斜足,AB=a.直线AB与平面α所成的角等于θ,AB在平面α内的射影A1B与平面α内过B3.已知:P为Rt△ABC所在平面外一点,∠ACB=90°,P到直角顶点C的距离等于24,P到平面ABC的距离等于12,P到AC4.已知:∠BAC在平面α内,PA是平面α的斜线,∠BAC=60°,∠PAB=∠PAC=45°.PA=a,PO⊥平面α于O.PD⊥AC于D,PE⊥AB于E.求:(1)PD的长;课堂教学设计说明1.如前所述,在学习过三垂线定理及其逆定理以后,教学要达到第二个“高潮”.也就是说要学生在这一学科的学习上攀登上第二个高峰.攀登第二个高峰要比攀登第一个高峰(求异面直线所成的角)要困难得多.因为题型较杂,知识面较广,思路较活.这都给学习造成很大的困难.但是,也正是这种困难才能激发起学生的学习兴趣和积极性.所以我不论是在北京师大二附中还是在北京九十二中教学时都安排了一节新课,三节到四节练习课,采用精讲多练的方法,使学生见到的题型更多,解题的思路更活.使他们比较容易地登上新的高峰,从而使以后的学习较为顺利.2.在解每一个例题时,如何灵活地应用三垂线定理及其逆定理是我们讲课的重点,也是时刻要把握住的中心环节.特别是一个空间图形有多个平面时,首先要找出“基准平面”,也就是说对于哪一个平面来用三垂线定理或其逆定理,在“基准平面”找出后,再找出“第一垂线”,也就是垂直“基准平面”的直线,然后斜线、射影也就迎刃而解了.3.在讲练习课时,要讲的例题很多,但一定要讲下述四个基本题:(1)△ABC是直角三角形,∠ACB=90°,PA⊥平面ABC.求证:BC⊥平面PAC.(2)课本第122页第3题.(3)课本第33页第11题.(4)正方体的体对角线与其异面的面对角线互相垂直.因为上述四个基本题和与之对应的基本图形常常包含于某些综合题和与之对应的综合图形之中,并且往往起着决定性作用.因此,在我们解一些综合题时,通过观察和分析,如果发现存在上述情况,就可以将它们化归为上述基本题和与之对应的基本图形去解.这是在解立体几何题时又一重要的化归思想——“综合图形基本化”.(请参看《数学通报》1998年第2期《化归方法与立体几何教学》)这四个基本题都是应用三垂线定理与其逆定理解题典型.对这四个基本题和与之对应的基本图形,一定要让学生会证、理解、掌握、记住.这样才有可能应用它们来解综合题,这四个基本题是四个台阶,是向上攀登必不可缺的台阶.4.为了利用公式cosθ1·cosθ2=cosθ来比较θ2与θ的大小,特选三题供老师们选用.(1)二面角α-AB-β的平面角是锐角,C是α内一点(它不在棱上),点D是C在β内的射影,点E是棱AB上任一点,∠CEB为锐角
本文标题:三垂线定理及其逆定理的练习课教案
链接地址:https://www.777doc.com/doc-4883904 .html