您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 几何最值—折叠求最值(含答案)
第1页共8页学生做题前请先回答以下问题问题1:几何最值问题的处理思路:①分析________、_________,寻找__________;②若属于常见模型、结构,调用模型、结构解决问题;若不属于常见模型,要结合所求目标,根据___________转化为基本定理或表达为函数解决问题.转化原则:尽量减少变量,向________、__________、__________靠拢,或使用同一变量表达所求目标.问题2:几何最值问题转化为基本定理处理;基本定理:①______________________________;②______________________________;③______________________________;④过圆内一点,最长的弦为直径,最短的弦为垂直于直径的弦.几何最值—折叠求最值一、单选题(共6道,每道16分)1.如图,在矩形ABCD中,AB=4,AD=6,E是AB边的中点,F是线段BC上的动点,将△EBF沿EF所在直线折叠得到△,连接,则的最小值是()A.B.C.D.4答案:A解题思路:第2页共8页试题难度:三颗星知识点:几何最值问题2.在Rt△ABC中,∠ACB=90°,AC=9,BC=12,P,Q两点分别是边AC,BC上的动点.将△PCQ沿PQ翻折,点C的对应点为,连接,则的最小值是()A.1B.2C.3D.4答案:C解题思路:第3页共8页试题难度:三颗星知识点:几何最值问题3.如图,在△ABC中,∠BAC=120°,AB=AC=4,M,N分别为边AB,AC上的动点,将△AMN沿MN翻折,点A的对应点为,连接,则长度的最小值为()A.B.4C.D.答案:D解题思路:第4页共8页试题难度:三颗星知识点:翻折变换(折叠问题)4.如图,在直角梯形ABCD中,AD⊥AB,AB=6,AD=CD=3,点E,F分别在线段AB,AD上,将△AEF沿EF翻折,点A的落点记为P.当P落在直角梯形ABCD内部时,DP长度的最小值为()A.3B.C.D.1答案:C第5页共8页解题思路:试题难度:三颗星知识点:翻折变换(折叠问题)5.动手操作:在矩形纸片ABCD中,AB=5,AD=13.如图所示,折叠纸片,使点A落在BC边上的处,折痕为PQ,当点在BC边上移动时,折痕的端点P,Q也随之移动.若限定点P,Q分别在AB,AD边上移动(包括端点),设=x,则x的取值范围是()第6页共8页A.B.C.D.答案:C解题思路:试题难度:三颗星知识点:几何最值问题6.如图,在三角形纸片ABC中,已知∠ABC=90°,BC=5,AB=4,过点A作直线平行于BC,折叠三角形纸片ABC,使直角顶点B落在直线上的点P处,折痕为MN,当点P在直线上移动时,折痕的端点M,N也随之移动.若限定端点M,N分别在AB,BC边上(包括端点)移动,则线段AP长度的最大值与最小值之差为()第7页共8页A.B.4C.2D.3答案:C解题思路:试题难度:三颗星知识点:折叠问题(翻折变换)第8页共8页
本文标题:几何最值—折叠求最值(含答案)
链接地址:https://www.777doc.com/doc-4884936 .html