您好,欢迎访问三七文档
当前位置:首页 > 电子/通信 > 综合/其它 > 单相半波可控整流..
电气与控制工程学院实践基地实践报告黑龙江科技大学综合性、设计性实践报告实践项目名称单相半波可控整流电路所属课程名称矿山电力系统及其自动装置实践日期2013年11月9日星期六班级电气工程2013级专硕学号2013200290姓名杨金龙成绩电气与控制工程学院实践基地电气与控制工程学院实践基地实践报告实践概述:【实践目的及要求】实践目的:1.熟悉强电实验的操作规程;2.进一步了解晶闸管的工作原理;3.掌握单相半波可控整流电路的工作原理并且了解不同负载下单相半波可控整流电路的工作情况。实践要求:1.单相半波整流电路带电阻性负载时特性的测定。2.单相半波整流电路带电阻—电感性负载时,续流二极管作用的观察【实践原理】1、晶闸管的工作原理晶闸管的双晶体管模型和内部结构如下:晶闸管在正常工作时,承受反向电压时,不论门极是否有触发电流,晶闸管都不会导通。当承受正向电压时,仅在门极有触发电流的情况下晶闸管才能开通。晶闸管一旦导通,门极就失去控制作用。要使晶闸管关断,只能使晶闸管的电流降到接近于零的某一数值一下。2.单相半波可控整流电路(电阻性负载)2.1电路结构若用晶闸管T替代单相半波整流电路中的二极管D,就可以得到单相半波可控整流电路的主电路,如图1-1电路图所示。设图中变压器副边电压u2为50HZ正弦波,负载RL为电阻性负载。电气与控制工程学院实践基地实践报告RdVTUTUSITIdUd图1单相半波可控整流电路(纯电阻负载)的电路原理图2.2工作原理:(1)在电源电压正半波(0~π区间),晶闸管承受正向电压,脉冲uG在ωt=α处触发晶闸管,晶闸管开始导通,形成负载电流id,负载上有输出电压和电流。(2)在ωt=π时刻,u2=0,电源电压自然过零,晶闸管电流小于维持电流而关断,负载电流为零。(3)在电源电压负半波(π~2π区间),晶闸管承受反向电压而处于关断状态,负载上没有输出电压,负载电流为零。(4)直到电源电压u2的下一周期的正半波,脉冲uG在ωt=2π+α处又触发晶闸管,晶闸管再次被触发导通,输出电压和电流又加在负载上,如此不断重复。2.3基本数量关系a.直流输出电压平均值2cos145.02cos12)(sin221222UUtdtUUdb.输出电流平均值2cos1.45.02aRURUIdd电气与控制工程学院实践基地实践报告c.负载电压有效值242sin.2aaUUd.负载电流有效值242sin2aaRUIe.晶闸管电流平均值2cos1.45.02aRURUIddT3.单相半波可控整流电路(阻感性负载)3.1电路结构LRu1u2TiduTuLuRudVT图2单相半波可控整流电路(阻—感性负载)电路原理图波形图3.2工作原理在ωt=0~α期间:晶闸管阳-阴极间的电压uAK大于零,此时没有触发信号,晶闸管处于正向关断状态,输出电压、电流都等于零。在ωt=α时刻,门极加触发信号,晶闸管触发导通,电源电压u2加到负载上,输出电压ud=u2。由于电感的存在,负载电流id只能从零按指数规律逐渐上升。电气与控制工程学院实践基地实践报告在ωt=ωt1~ωt2期间:输出电流id从零增至最大值。在id的增长过程中,电感产生的感应电势力图限制电流增大,电源提供的能量一部分供给负载电阻,一部分为电感的储能。在ωt=ωt2~ωt3期间:负载电流从最大值开始下降,电感电压改变方向,电感释放能量,企图维持电流不变。在ωt=π时,交流电压u2过零,由于感应电压的存在,晶闸管阳极、阴极间的电压uAK仍大于零,晶闸管继续导通,此时电感储存的磁能一部分释放变成电阻的热能,另一部分磁能变成电能送回电网,电感的储能全部释放完后,晶闸管在u2反压作用下而截止。直到下一个周期的正半周,即ωt=2π+α时,晶闸管再次被触发导通,如此循环不已。4.单相半波可控整流电路(感性负载加续流二极管)4.1电路结构TVTVDRLu2图3单相半波可控整流电路(阻—感性负载激加续流二极管)的电路原理图4.2工作原理在电源电压正半波(0~π),晶闸管受正向电压。在ωt=α处触发晶闸管,使其导通,形成负载电流id,负载上有输出电压和电流,此间续流二极管VD承受反向阳极电压而关断。在电源电压负半波,电感感应电压使续流二极管VD导通续流,此时电压u2<0,u2通过续流二极管VD使晶闸管承受反向电压而关断,负载两端的输出电压为续流二极管的管压降,如果电感足够大,续流二极管一直导通到下一周期晶闸管导通,使id连续,且id波形近似为一条直线。以上分析可看出,电感性负载加续流二极管后,输出电压波形与电阻性负载波形相同,续流二极管可起到提高输出电压的作用。在大电感负载时负载电流波形连续且近似一电气与控制工程学院实践基地实践报告条直线,流过晶闸管的电流波形和流过续流二极管的电流波形是矩形波。对于电感性负载加续流二极管的单相半波可控整流器移相范围与单相半波可控整流器电阻性负载相同,为0~180º,且有α+θ=180º。4.3基本数量关系a.直流输出电压平均值2cos145.02cos12)(sin221222UUtdtUUdb.输出电流平均值2cos1.45.02aRURUIddc.晶闸管电流的平均值dTdII2d.负载电流有效值dTII2【实践设备及仪器】序号型号备注1DJK01电源控制屏该控制屏包含“三相电源输出”,“励磁电源”等几个模块。2DJK02晶闸管主电路该挂件包含“晶闸管”,以及“电感”等几个模块。3DJK03-1晶闸管触发电路该挂件包含“单结晶体管触发电路”模块。电气与控制工程学院实践基地实践报告4DJK06给定及实验器件该挂件包含“二极管”以及“开关”等几个模块。5D42三相可调电阻6双踪示波器自备7万用表自备实践内容:【实践方案设计】(1)单结晶体管触发电路的调试将DJK01电源控制屏的电源选择开关打到“直流调速”侧,使输出线电压为200V,用两根导线将200V交流电压接到DJK03-1的“外接220V”端,按下“启动”按钮,打开DJK03-1电源开关,用双踪示波器观察单结晶体管触发电路中整流输出的梯形波电压、锯齿波电压及单结晶体管触发电路输出电压等波形。调节移相电位器RP1,观察锯齿波的周期变化及输出脉冲波形的移相范围能否在30°~170°范围内移动?(2)单相半波可控整流电路接电阻性负载触发电路调试正常后,按电路图接线。将电阻器调在最大阻值位置,按下“动”按钮,用示波器观察负载电压Ud、晶闸管VT两端电压UVT的波形,调节电位器RP1,观察α=30°、60°、90°、120°、150°时Ud、UVT的波形,并测量直流输出电压Ud和电源电压U2,记录于下表中。α30°60°90°120°150°U2Ud(记录值)Ud/U2Ud(计算值)电气与控制工程学院实践基地实践报告Ud=0.45U2(1+cosα)/2(3)单相半波可控整流电路接电阻电感性负载将负载电阻R改成电阻电感性负载(由电阻器与平波电抗器Ld串联而成)。暂不接续流二极管VD1,在不同阻抗角[阻抗角φ=tg-1(ωL/R),保持电感量不变,改变R的电阻值,注意电流不要超过1A]情况下,观察并记录α=30°、60°、90°、120°时的直流输出电压值Ud及UVT的波形。α30°60°90°120°150°U2Ud(记录值)Ud/U2Ud(计算值)Ud=0.45U2(1+cosα)/2【实践过程】(实践步骤、记录、数据、分析)按照详细电路连接,检查电路无误后,合上电源,调节滑阻改变错误!未找到引用源。的大小,观察到灯泡随着调节滑阻时而变暗时而变亮。1、实验数据记录表输入电压VU1282负载组成RLRL+续流二极管电气与控制工程学院实践基地实践报告αUd(V)0°5555545°494690°32.5230135°7.5092.实验波形记录和分析2.1纯电阻负载输出电压波形图负载:灯泡(电阻)α=0°负载:灯泡(电阻)α=45°负载:灯泡(电阻)α=90°电气与控制工程学院实践基地实践报告负载:灯泡(电阻)α=135°2.2纯电阻负载实验分析在此试验中,我们可以看出通过改变触发角α的大小,直流输出电压,负载上的输出电压波形都发生变化,显然α=180°时,平均电压dU=0由于晶闸管只在电源电压正半波(0~)区间内导通,输出电压dU为极性不变但瞬时值变化的脉动直流,故称半波整流。单相半波可控整流电路中的输出电压与电流的波形相同,由于是电阻负载,电阻对电流没有阻碍作用,没有续流的作用,不会产生反向电流,晶闸管的电压没有负值。2.3电感负载输出电压波形图负载:电阻+电感α=0°负载:电感α=90°电气与控制工程学院实践基地实践报告2.4电阻电感性负载实验分析由于在实际生活中有很多负载是电感性负载,如直流电动机的绕组、电磁离合器的线圈、电磁铁等,它们既含有电阻又含有电感,且电感量较大。由于电磁感应作用,当通过电感元件L的电流发生变化时,在电感中产生阻碍电流变化的感应电动势,将使电流的变化总是滞后于外加电压的变化。与电阻性负载相比,负载电感的存在,使得晶闸管的导通角增大,在电源电压由正到负的过零点也不会关断,输出电压出现了负波形,输出电压和电流的平均值减小;大电感负载时输出电压正负面积趋于相等,输出电压平均值趋于零。2.5带续流二极管的电感负载的输出电压波形图负载:电阻+电感α=0°负载:电感α=45°电气与控制工程学院实践基地实践报告负载:电感α=90°负载:电感α=135°2.6带续流二极管的电感负载实验分析由以上分析可以看出,阻感性负载加续流二极管后,输出电压波形与电阻性负载波形相同,续流二极管起到了续流的作用。在电感无穷大时,负载电流为一直线,流过晶闸管和续流二极管的电流波形是矩形波。阻感性负载加续流二极管的单向半波可控整流的α+θ也等于180º。【结论】本次实验中,经过亲自的动手连接电路,并自己对波形图进行观察,对单相半波整流电路的概念又有了新的理解。本来只是在书本上看到了理想的波形,但是在实验中,真正的波形还是和理想波形有很大的差别的。因此,这次实验还是让我觉得受益匪浅,对单项半波整流电路亦有了新的认识。电气与控制工程学院实践基地实践报告指导教师评语及成绩:评语:实践目的是否明确:明确□基本明确□一般□较差□实践原理阐述是否准确:准确□基本准确□一般□较差□实践方案设计是否合理:合理□基本合理□一般□较差□实践过程记录是否详细:详细□较详细□一般□较差□实践结论是否正确:正确□基本正确□一般□较差□成绩:指导教师签名:批阅日期:
本文标题:单相半波可控整流..
链接地址:https://www.777doc.com/doc-4904445 .html