您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 高二数学-选修2-3离散型随机变量的期望-ppt
一、复习回顾1、离散型随机变量的分布列XP1xix2x······1p2pip······2、离散型随机变量分布列的性质:(1)pi≥0,i=1,2,…;(2)p1+p2+…+pi+…=1.1、某人射击10次,所得环数分别是:1,1,1,1,2,2,2,3,3,4;则所得的平均环数是多少?2104332221111X把环数看成随机变量的概率分布列:X1234P10410310210121014102310321041X权数加权平均二、互动探索2、某商场要将单价分别为18元/kg,24元/kg,36元/kg的3种糖果按3:2:1的比例混合销售,如何对混合糖果定价才合理?X182436P把3种糖果的价格看成随机变量的概率分布列:636261)/(23613631242118kgX元一、离散型随机变量取值的平均值数学期望一般地,若离散型随机变量X的概率分布为:nniipxpxpxpxXE2211)(则称为随机变量X的平均值或数学期望。P1xix2x······1p2pip······nxnpX设Y=aX+b,其中a,b为常数,则Y也是随机变量.(1)Y的分布列是什么?(2)E(Y)=?思考:P1xix2x······1p2pip······nxnpXnniipxpxpxpxXE2211)(P1xix2x······1p2pip······nxnpXP1xix2x······1p2pip······nxnpXYbax1baxibax2······baxnnnpbaxpbaxpbaxYE)()()()(2211)()(212211nnnpppbpxpxpxabXaE)(一、离散型随机变量取值的平均值数学期望nniipxpxpxpxXE2211)(P1xix2x······1p2pip······nxnpX二、数学期望的性质bXaEbaXE)()(三、基础训练1、随机变量ξ的分布列是ξ135P0.50.30.2(1)则E(ξ)=.2、随机变量ξ的分布列是2.4(2)若η=2ξ+1,则E(η)=.5.8ξ47910P0.3ab0.2E(ξ)=7.5,则a=b=.0.40.1例1.篮球运动员在比赛中每次罚球命中得1分,罚不中得0分.已知某运动员罚球命中的概率为0.7,则他罚球1次的得分X的均值是多少?一般地,如果随机变量X服从两点分布,X10Pp1-p则pppXE)1(01)(四、例题讲解小结:例2.两名战士在一次射击比赛中,战士甲得1分、2分、3分的概率分别为0.4、0.1、0.5;战士乙得1分、2分、3分的概率分别为0.1、0.6、0.3,那么两名战士获胜希望较大的是谁?解:设这次射击比赛战士甲得X1分,战士乙得X2分,则分布列分别如下:X2123P0.10.60.3根据均值公式,得E(X1)=1×0.4+2×0.1+3×0.5=2.1;E(X2)=1×0.1+2×0.6+3×0.3=2.2.E(X2)E(X1),故这次射击比赛战士乙得分的均值较大,所以乙获胜希望大.X1123P0.40.10.5小结:求离散型随机变量的均值的步骤:(1)理解随机变量X的意义,写出X可能取得的全部值;(2)求X取每个值的概率;(3)写出X的分布列;(4)由期望的定义求出E(X).练1.盒中装有5节同牌号的五号电池,其中混有2节废电池.现在无放回地每次取一节电池检验,直到取到好电池为止,求抽取次数X的分布列及期望.五、练习提升:变式:1.若将直到取到好电池为止,改为直到取出所有好电池为止,那么X的可能取值有哪些?2.若将无放回改为有放回,X的可能取值有哪些?六、课堂小结一、离散型随机变量取值的平均值数学期望nniipxpxpxpxXE2211)(P1xix2x······1p2pip······nxnpX二、数学期望的性质bXaEbaXE)()(•2.有10件产品,其中3件是次品,从中任取2件,用X表示取到次品的个数,则E(X)等于()•3.某游戏射击场规定:①每次游戏射击5发子弹;②5发全部命中奖励40元,命中4发不奖励,也不必付款,命中3发或3发以下,应付款2元.现有一游客,其命中率为0.5.•(1)求该游客在一次游戏中5发全部命中的概率;•(2)求该游客在一次游戏中获得奖金的均值.
本文标题:高二数学-选修2-3离散型随机变量的期望-ppt
链接地址:https://www.777doc.com/doc-4905629 .html