您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 8-1--二重积分的概念与性质
第8章多元函数积分学8.1二重积分的概念与性质一、问题的提出二、二重积分的概念三、二重积分的性质四、小结思考题8.1二重积分的概念与性质柱体(cylindricalbody)体积=底面积×高特点:平顶.曲顶柱体体积=?特点:曲顶(curvedvertexsurface).),(yxfzD1.曲顶柱体的体积(volume)一、问题的提出求曲顶柱体的体积采用“分割、近似、求和、取极限”的方法,先看动画演示.刚才大家看到是曲顶柱体的底面网格划分比较稀的情况,下面请大家继续观看网格划分较密时的情况.曲顶柱体体积的计算步骤是:用若干个小平顶柱体体积之和近似表示曲顶柱体的体积.xzyoD),(yxfzi),(ii.),(lim10iiniifV曲顶柱体的体积先分割曲顶柱体的底,并取典型小区域,求对应小曲顶柱体体积的近似值.i设有一平面薄片,占有xOy面上的闭区域D,在点),(yx处的面密度为),(yx,假定),(yx在D上连续,平面薄片的质量为多少?2.求平面薄片的质量i),(ii将薄片分割成若干小块,取典型小块,将其近似看作均匀薄片,求质量.所有小块质量之和近似等于薄片总质量.),(lim10iiniiMxyO定义设),(yxf是有界闭区域D上的有界函数,将闭区域D任意分成n个小闭区域1,,2,n,其中i表示第i个小闭区域,也表示它的面积,在每个i上任取一点),(ii,作乘积),(iifi,),,2,1(ni,并作和iiniif),(1,二、二重积分的概念积分区域如果当各小闭区域的直径中的最大值趋近于零时,这和式的极限存在,则称此极限为函数),(yxf在闭区域D上的二重积分(doubleintegral),记为Ddyxf),(,即Ddyxf),(iiniif),(lim10.积分和被积函数积分变量被积表达式面积元素(1)在二重积分的定义中,对闭区域的划分是任意的.(2)当),(yxf在闭区域上连续时,定义中和式的极限必存在,即二重积分必存在.对二重积分定义的说明:二重积分的几何意义:当被积函数大于零时,二重积分是柱体的体积.当被积函数小于零时,二重积分是柱体的体积的负值.在直角坐标系下用平行于坐标轴的直线网来划分区域D,DDdxdyyxfdyxf),(),(dxdyd故二重积分可写为xyOD则面积元素(arealelement)为性质1Ddyxgyxf)],(),([.),(),(DDdyxgdyxf(二重积分与定积分有类似的性质)三、二重积分的性质设、为常数,则性质2对积分区域具有可加性.),(),(),(21DDDdyxfdyxfdyxf性质3若为D的面积,则.1DDdd性质4若在D上),,(),(yxgyxf.),(),(DDdyxgdyxf特殊地.),(),(DDdyxfdyxf)(21DDD则有设M、m分别是),(yxf在闭区域D上的最大值和最小值,为D的面积,则性质5设函数),(yxf在闭区域D上连续,为D的面积,则在D上至少存在一点),(使得性质6(二重积分中值定理)DMdyxfm),(),(),(fdyxfD(二重积分估值不等式)例1不作计算,估计deIDyx)(22的值,其中D是椭圆闭区域:12222byax)0(ab.在D上2220ayx,,12220ayxeee由性质6知,222)(aDyxede解deDyx)(22ab.2aeab区域D的面积,ab例2估计DxyyxdI16222的值,其中D:20,10yx.区域面积2,,16)(1),(2yxyxf在D上),(yxf的最大值)0(41yxM),(yxf的最小值5143122m)2,1(yx故4252I.5.04.0I解例3比较积分Ddyx)ln(与Ddyx2)][ln(的大小,其中D是三角形闭区域,三顶点各为(1,0),(1,1),(2,0).解三角形斜边方程2yx在D内有eyx21,故1)ln(yx,于是2)ln()ln(yxyx,因此Ddyx)ln(Ddyx2)][ln(.oxy121D二重积分的定义二重积分的性质二重积分的几何意义(曲顶柱体的体积)(和式的极限)四、小结思考题将二重积分定义与定积分定义进行比较,找出它们的相同之处与不同之处.定积分与二重积分都表示某个和式的极限值,且此值只与被积函数及积分区域有关.不同的是定积分的积分区域为区间,被积函数为定义在区间上的一元函数,而二重积分的积分区域为平面区域,被积函数为定义在平面区域上的二元函数.思考题解答
本文标题:8-1--二重积分的概念与性质
链接地址:https://www.777doc.com/doc-4910499 .html