您好,欢迎访问三七文档
MonteCarloMethodsinStatisticalMechanics:FoundationsandNewAlgorithmsAlanD.SokalDepartmentofPhysicsNewYorkUniversity4WashingtonPlaceNewYork,NY10003USAE-mail:SOKAL@NYU.EDULecturesattheCarg eseSummerSchoolon\FunctionalIntegration:BasicsandApplicationsSeptember1996ThesenotesareanupdatedversionoflecturesgivenattheCoursdeTroisi emeCycledelaPhysiqueenSuisseRomande(Lausanne,Switzerland)inJune1989.WethanktheTroisi emeCycledelaPhysiqueenSuisseRomandeandProfessorMichelDrozforkindlygivingpermissiontoreprintthesenotes.NotetotheReaderThefollowingnotesarebasedonmycourse\MonteCarloMethodsinStatisticalMechanics:FoundationsandNewAlgorithmsgivenattheCoursdeTroisi emeCycledelaPhysiqueenSuisseRomande(Lausanne,Switzerland)inJune1989,andonmycourse\Multi-GridMonteCarloforLatticeFieldTheoriesgivenattheWinterCollegeonMultilevelTechniquesinComputationalPhysics(Trieste,Italy)inJanuary{February1991.Thereaderiswarnedthatsomeofthismaterialisout-of-date(thisisparticularlytrueasregardsreportsofnumericalwork).Forlackoftime,Ihavemadenoattempttoupdatethetext,butIhaveaddedfootnotesmarked\NoteAdded1996thatcorrectafewerrorsandgiveadditionalbibliography.My rsttwolecturesatCarg ese1996werebasedonthematerialincludedhere.Mythirdlecturedescribedthenew nite-size-scalingextrapolationmethodof[97,98,99,100,101,102,103].1IntroductionThegoaloftheselecturesistogiveanintroductiontocurrentresearchonMonteCarlomethodsinstatisticalmechanicsandquantum eldtheory,withanemphasison:1)theconceptualfoundationsofthemethod,includingthepossibledangersandmisuses,andthecorrectuseofstatisticalerroranalysis;and2)newMonteCarloalgorithmsforproblemsincriticalphenomenaandquantum eldtheory,aimedatreducingoreliminatingthe\criticalslowing-downfoundinconventionalalgorithms.Theselecturesareaimedatamixedaudienceoftheoretical,computationalandmath-ematicalphysicists|someofwhomarecurrentlydoingorwanttodoMonteCarlostudiesthemselves,othersofwhomwanttobeabletoevaluatethereliabilityofpub-lishedMonteCarlowork.Beforeembarkingon9hoursoflecturesonMonteCarlomethods,letmeo erawarning:MonteCarloisanextremelybadmethod;itshouldbeusedonlywhenallalternativemethodsareworse.Whyisthisso?Firstly,allnumericalmethodsarepotentiallydangerous,comparedtoanalyticmethods;therearemorewaystomakemistakes.Secondly,asnumericalmethodsgo,MonteCarloisoneoftheleaste cient;itshouldbeusedonlyonthoseintractableproblemsforwhichallothernumericalmethodsareevenlesse cient.1Letmebemorepreciseaboutthislatterpoint.VirtuallyallMonteCarlomethodshavethepropertythatthestatisticalerrorbehavesaserror 1pcomputationalbudget(orworse);thisisanessentiallyuniversalconsequenceofthecentrallimittheorem.Itmaybepossibletoimprovetheproportionalityconstantinthisrelationbyafactorof106ormore|thisisoneoftheprincipalsubjectsoftheselectures|buttheoverall1=pnbehaviorisinescapable.Thisshouldbecontrastedwithtraditionaldeterministicnumericalmethodswhoserateofconvergenceistypicallysomethinglike1=n4ore nore 2n.Therefore,MonteCarlomethodsshouldbeusedonlyonthoseextremelydi cultproblemsinwhichallalternativenumericalmethodsbehaveevenworsethan1=pn.Consider,forexample,theproblemofnumericalintegrationinddimensions,andletuscompareMonteCarlointegrationwithatraditionaldeterministicmethodsuchasSimpson’srule.Asiswellknown,theerrorinSimpson’srulewithnnodalpointsbehavesasymptoticallyasn 4=d(forsmoothintegrands).Inlowdimension(d8)thisismuchbetterthanMonteCarlointegration,butinhighdimension(d8)itismuchworse.SoitisnotsurprisingthatMonteCarloisthemethodofchoiceforperforminghigh-dimensionalintegrals.Itisstillabadmethod:withanerrorproportionalton 1=2,itisdi culttoachievemorethan4or5digitsaccuracy.Butnumericalintegrationinhighdimensionisverydi cult;thoughMonteCarloisbad,allotherknownmethodsareworse.1Insummary,MonteCarlomethodsshouldbeusedonlywhenneitheranalyticmeth-odsnordeterministicnumericalmethodsareworkable(ore cient).OnegeneraldomainofapplicationofMonteCarlomethodswillbe,therefore,tosystemswithmanydegreesoffreedom,farfromtheperturbativeregime.Butsuchsystemsarepreciselytheonesofgreatestinterestinstatisticalmechanicsandquantum eldtheory!Itisappropriatetoclosethisintroductionwithageneralmethodologicalobservation,ablyarticulatedbyWoodandErpenbeck[3]::::these[MonteCarlo]investigationssharesomeofthefeaturesofordinaryexperimentalwork,inthattheyaresusceptibletobothstatisticalandsys-tematicerrors.Withregardtothesematters,webelievethatpapersshouldmeetmuchthesamestandardsasarenormallyrequiredforexperimentalinvestigations.Wehaveinmindtheinclusionofestimatesofstatistical1Thisdiscussionofnumericalintegrationisgrosslyoversimpli ed.Firstly,therearedeterministicmethodsbetterthanSimpson’srule;andtherearealsosophisticatedMonteCarlomethodswhoseasymptoticbehavior(onsmoothintegrands)behavesasn pwithpstrictlygreaterthan1=2[1,2].Secondly,forallthesealgorithms(exceptstandardMonteCarlo),theasymptoticbehaviorasn!1maybeirrelevantinpractice,becauseitisachievedonlyatridiculouslylargevaluesofn.Forexample,tocarryoutSimpson’srulewitheven10nodesperaxis(averycoarsemesh)requiresn=10d,whichisunachievableford 10.2
本文标题:Monte Carlo Methods in Statistical Mechanics Found
链接地址:https://www.777doc.com/doc-4917897 .html