您好,欢迎访问三七文档
ABA’C’B’CO前面我们已经学习了图形的哪些变换?平移:平移的方向,平移的距离.旋转:旋转中心,旋转方向,旋转角度.相似:相似比.对称(轴对称与轴对称图形,中心对称与中心对称图形):对称轴,对称中心.注:图形这些不同的变换是我们学习几何必不可少的重要工具,它不但装点了我们的生活,而且是学习后续知识的基础.下面请欣赏如下图形的变换回顾:下列图形中,每个图中的四边形ABCD和四边形A′B′C′D′都是相似图形.分别观察这五个图,你发现每个图中的两个四边形各对应点的连线有什么特征?1.位似图形的概念如果两个图形不仅相似,而且对应顶点的连线相交于一点,像这样的两个图形叫做位似图形,这个点叫做位似中心.这时的相似比又称为位似比。1.判断下列各对图形是不是位似图形.(1)正五边形ABCDE与正五边形A′B′C′D′E′;(2)等边三角形ABC与等边三角形A′B′C′.思考:是否相似图形都是位似图形?是是判断下面的正方形是不是位似图形?(1)不是ACDBFEG显然,位似图形是相似图形的特殊情形.相似图形不一定是位似图形,可位似图形一定是相似图形位似是一种具有位置关系的相似。位似图形是相似图形的特殊情形。位似图形必定是相似图形,而相似图形不一定是位似图形。两个位似图形的位似中心只有一个。两个位似图形可能位于位似中心的两侧,也可能位于位似中心的一侧。注意思考:位似图形有何性质?2.位似图形的性质从第(1),(2)图中,我们可以看到,△OAB∽△OA′B′,则OAOA′=OBOB′=ABA′B′.从第(3)图中同样可以看到AFAD=APAC=AEAB=EPBC=FPDC对应点与位似中心共线。不经过位似中心的对应边平行。位似图形上任意一对应点到位似中心的距离之比等于位似比。位似图形的性质•若△ABC与△A’B’C’的相似比为:1:2,则OA:OA’=()。OAA’BCB’C’1:2O.ABCA'C’B’.1.如图,已知△ABC和点O.以O为位似中心,求作△ABC的位似图形,并把△ABC的边长扩大到原来的两倍.OA:OA’=OB:OB’=OC:OC’=1:2思考:还有没其他作法?O.ABA'C’B’C如果位似中心跑到三角形内部呢?ACBOABA’C’B’CO以0为中心把△ABC缩小为原来的一半。位似的作用位似可以将一个图形放大或缩小。二、位似图形的画法ABA’C’B’CO以0为位似中心把△ABC在同侧缩小为原来的一半1.画出ABC2.选取中心点3.连结OA、OB、OC4.在OA、OB、OC上分别选取A’、B’、C’,使OA’/OA=1/2、OB’/OB=1/2、OC’/OC=1/2步骤:5.连结A’B’C’,所连成的图形就是所求作图形二、位似图形的画法ABA’C’B’CO以0为中心把△ABC缩小为原来的一半练习:如图:以O为位似中心,将△ABC放大为原来的两倍BCAOA''C''B''A'C'B'BCAO如果把位似图形放到直角坐标系中,又如何去探究位似变换与坐标之间的关系呢?请以坐标原点O为位似中心,作□ABCD的位似图形,并把它的边长放大3倍。小练习分析:根据位似图形上任意一对对应点到位似中心的距离之比等于位似比,我们只要连结位似中心O和□ABCD的各顶点,并把线段延长(或反向延长)到原来的3倍,就得到所求作图形的各个顶点。1.连结OA,OB,OC,OD.2.分别延长OA,OB,OC,OD至G,C,E,F,使3OGOCOEOFOAOBOCOD3.依次连结GC,CE,EF,FG.四边形GCEF就是所求作的四边形.如果反向延长OA,OB,OC,OD,就得到四边形G’C’E’F’,也是所求作的四边形.作法:使新图形与原图形对应线段的比是2∶1.ABGCEDF●P在原图上取几个关键点A,B,C,D,E,F,G;图外任取一点P;作射线AP,BP,CP,DP,EP,FP,GP;在这些射线上依次取点A′,B′,C′,D′,E′,F′,G′,使PA′=2PA,PB′=2PB,PC′=2PC,PD′=2PD,PC′=2PC,PE′=2PE,PF′=2PF,PG′=2PG;B′A′C′D′E′F′G′顺次连接点A′,B′,C′,D′,E′,F′,G′,所得到的图形(向下的箭头)就是符合要求的图形。小练习如果依次在射线上PA,PB,PC,PD,PE,PF,PG上取点A′,B′,C′,D′,E′,F′,G′呢?结果是一个向上的箭头.新图形与原图形是位似图形,位似比是2∶1A′B′C′D′E′F′G′ABGCEDF●P你还有其它方法吗?①确定位似中心,位似中心的位置可随意选择;②确定原图形的关键点,如四边形有四个关键点,即它的四个顶点;③确定位似比,根据位似比的取值,可以判断是将一个图形放大还是缩小;④符合要求的图形不唯一,因为所作的图形与所确定的位似中心的位置有关,并且同一个位似中心的两侧各有一个符合要求的图形。位似变换的步骤如果两个图形不仅相似,而且对应顶点的连线相交于一点,像这样的两个图形叫做位似图形,这个点叫做位似中心,这时的相似比又称为位似比.1.什么叫位似图形?2.位似图形的性质位似图形上的任意一对对应点到位似中心的距离之比等于位似比3.利用位似可以把一个图形放大或缩小复习回顾DEFAOBC如何把三角形ABC放大为原来的2倍?DEFAOBC对应点连线都交于____________对应线段_______________________________位似中心平行或在一条直线上复习回顾B'A'xyBAo在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O为位似中心,相似比为1:3,把线段AB缩小.A′(2,1),B′(2,0)观察对应点之间的坐标的变化,你有什么发现?探索1:B'A'xyBAo在平面直角坐标系中,有两点A(6,3),B(6,0),以原点O为位似中心,相似比为1:3,把线段AB缩小.A′(2,1),B′(2,0)A〞B〞A〞(-2,-1),B(-2,0)在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k.观察对应点之间的坐标的变化,你有什么发现?xyo在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(2,1),C(6,2),以原点O为位似中心,相似比为2画它的位似图形.BACA′(4,6),B′(4,2),C′(12,4)放大后对应点的坐标分别是多少?B'A'C'探索2:还有其他办法吗?2461213624xyo在平面直角坐标系中,△ABC三个顶点的坐标分别为A(2,3),B(2,1),C(6,2),以原点O为位似中心,相似比为2,将△ABC放大.A′(-4,-6),B′(-4,-2),C′(-12,-4)BAC放大后对应点的坐标分别是多少?B”A”xyo例题.在平面直角坐标系中,四边形ABCD的四个顶点的坐标分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4),画出它的一个以原点O为位似中心,相似比为1/2的位似图形.A′(-3,3),B′(-4,1),C′(-2,0),D′(-1,2)BACDA′B′C′D′你还有其他办法吗?试试看.在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k例如:点A(x,y)的对应点为A’,则A’点的坐标可以这样确定归纳:xA’=xA×k,yA'=yA×kxA’=xA×(-k),yA'=yA×(-k)或即A’(kx,ky)即A’(-kx,-ky)例:如果四边形ABCD的坐标分别为A(-6,6),B(-8,2),C(-4,0),D(-2,4),写出以原点为位似中心,相似比为(1/2)的一个图形的对应点的坐标练习:A'(-3,3)B'(-4,1)C'(-2,0)D'(-1,2)或A'(3,-3)B'(4,-1)C'(2,0)D'(1,-2)参考答案:随堂练习1.判断下列各对图形哪些是位似图形,哪些不是.(1)五边形ABCDE与五边形A′B′C′D′E′(2)正方形ABCD与正方A′B′C′D′√×(3)等边三角形ABC与等边三角形A′B′C′√2.下面的说法对吗?为什么?(1)分别在△ABC的边AB,AC上取点D,E,使DE∥BC,那么△ADE是△ABC缩小后的图形。(2)分别在△ABC的边AB,AC的延长线上取点D,E,使DE∥BC,那么△ADE是△ABC放大后的图形。(3)分别在△ABC的边AB,AC的反向延长线上取点D,E,使DE∥BC,那么△ADE是△ABC缩小后的图形。ABCDEADEBCEDCBA√×√3.如图P,E,F分别是AC,AB,AD的中点,四边形AEPF与四边形ABCD是位似图形吗?如果是位似图形,说出位似中心和位似比.是位似图形。位似中心是点A,位似比是1:2。4.哪些图形是位似图形并指出位似图形的位似中心。OP(1)(3)(2)√×√位似中心是点O。位似中心是点P。5.作出一个新图形,使新图形与原图形对应线段的比是2∶1。6.(1)如果在射线OA,OB,OC上分别取D,E,F,使OD=2OA,OE=2OB,OF=2OC,那么,结果会怎样?DEFAOBC结果会得到一个放大了的△DEF,且△DEF的三边是△ABC三边的2倍.即它们的位似比是2∶1。(2)如果在射线AO,BO,CO上分别取点D,E,F使DO=OA,EO=OB,FO=OC,那么,结果又会怎样?结果会得到一个与△ABC全等的△DEF,.即它们的位似比是1∶1。DEFAOBCOABC7.任意画一个三角形,将△ABC的三边缩小为原来的一半。F●E●D●课堂小结1.位似图形、位似中心、位似比:如果两个图形不仅形状相同,而且每组对应顶点所在的直线都经过同一个点,那么这样的两个图形叫做位似图形。这个点叫做位似中心。这时的相似比又称为位似比.2.位似图形的性质:位似图形上的任意一对对应点到位似中心的距离之比等于位似比。以坐标原点为位似中心的位似变换有以下性质:若原图形上点的坐标为(x,y),与原图形的位似比为k,则像上的对应点的坐标为(kx,ky)或(―kx,―ky)。画出基本图形。选取位似中心。根据条件确定对应点,并描出对应点。顺次连结各对应点,所成的图形就是所求的图形。3.位似图形的画法:对称平移旋转相似4.图形变换
本文标题:27.3位似课件全
链接地址:https://www.777doc.com/doc-4951668 .html