您好,欢迎访问三七文档
排列与组合经典习题1.6个人分乘两辆不同的汽车,每辆车最多坐4人,则不同的乘车方法数为()A.40B.50C.60D.702.有6个座位连成一排,现有3人就坐,则恰有两个空座位相邻的不同坐法有()A.36种B.48种C.72种D.96种[解析]恰有两个空座位相邻,相当于两个空位与第三个空位不相邻,先排三个人,然后插空,从而共=72种排法,故选C.BC[解析]先分组再排列,一组2人一组4人有=15种不同的分法;两组各3人共有=10种不同的分法,所以乘车方法数为25×2=50,故选B.26C2236AC2423AA3.只用1,2,3三个数字组成一个四位数,规定这三个数必须同时使用,且同一数字不能相邻出现,这样的四位数有()A.6个B.9个C.18个D.36个4.男女学生共有8人,从男生中选取2人,从女生中选取1人,共有30种不同的选法,其中女生有()A.2人或3人B.3人或4人C.3人D.4人C[解析]注意题中条件的要求,一是三个数字必须全部使用,二是相同的数字不能相邻,选四个数字共有=3(种)选法,即1231,1232,1233,而每种选择有=6(种)排法,所以共有3×6=18(种)情况,即这样的四位数有18个.13C2322CAA[解析]设男生有n人,则女生有(8-n)人,由题意可得=30,解得n=5或n=6,代入验证,可知女生为2人或3人.182nnCC5.某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则方法有()A.45种B.36种C.28种D.25种6.某公司招聘来8名员工,平均分配给下属的甲、乙两个部门,其中两名英语翻译人员不能分在同一个部门,另外三名电脑编程人员也不能全分在同一个部门,则不同的分配方案共有()A.24种B.36种C.38种D.108种[解析]因为10÷8的余数为2,故可以肯定一步一个台阶的有6步,一步两个台阶的有2步,那么共有=28种走法.28CCB[解析]本题考查排列组合的综合应用,据题意可先将两名翻译人员分到两个部门,共有2种方法,第二步将3名电脑编程人员分成两组,一组1人另一组2人,共有种分法,然后再分到两部门去共有种方法,第三步只需将其他3人分成两组,一组1人另一组2人即可,由于是每个部门各4人,故分组后两人所去的部门就已确定,故第三步共有种方法,由分步乘法计数原理共有=36(种).13C2213AC13C1322132CAC8.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是()A.72B.96C.108D.1447.已知集合A={5},B={1,2},C={1,3,4},从这三个集合中各取一个元素构成空间直角坐标系中点的坐标,则确定的不同点的个数为()A.33B.34C.35D.36AC[解析]①所得空间直角坐标系中的点的坐标中不含1的有=12个;②所得空间直角坐标系中的点的坐标中含有1个1的有=18个;③所得空间直角坐标系中的点的坐标中含有2个1的有=3个.故共有符合条件的点的个数为12+18+3=33个,故选A.3312AC333312AAC13C[解析]分两类:若1与3相邻,有=72(个),若1与3不相邻有=36(个)故共有72+36=108个23221322AACA3333AA9.如果在一周内(周一至周日)安排三所学校的学生参观某展览馆,每天最多只安排一所学校,要求甲学校连续参观两天,其余学校均只参观一天,那么不同的安排方法有()A.50种B.60种C.120种D.210种C10.安排7位工作人员在5月1日到5月7日值班,每人值班一天,其中甲、乙二人都不能安排在5月1日和2日,不同的安排方法共有________种.(用数字作答)2400[解析]先安排甲学校的参观时间,一周内两天连排的方法一共有6种:(1,2)、(2,3)、(3,4)、(4,5)、(5,6)、(6,7),甲任选一种为,然后在剩下的5天中任选2天有序地安排其余两所学校参观,安排方法有种,按照分步乘法计数原理可知共有不同的安排方法=120种,故选C.16C25A2516AC[解析]先安排甲、乙两人在后5天值班,有=20(种)排法,其余5人再进行排列,有=120(种)排法,所以共有20×120=2400(种)安排方法.25A55A11.今有2个红球、3个黄球、4个白球,同色球不加以区分,将这9个球排成一列有________种不同的排法.(用数字作答)12.将6位志愿者分成4组,其中两个组各2人,另两个组各1人,分赴世博会的四个不同场馆服务,不同的分配方案有________种(用数字作答).1080126013.要在如图所示的花圃中的5个区域中种入4种颜色不同的花,要求相邻区域不同色,有________种不同的种法(用数字作答).[解析]5有4种种法,1有3种种法,4有2种种法.若1、3同色,2有2种种法,若1、3不同色,2有1种种法,∴有4×3×2×(1×2+1×1)=72种.72[解析]由题意可知,因同色球不加以区分,实际上是一个组合问题,共有=1260(种)排法.332549CCC[解析]先将6名志愿者分为4组,共有种分法,再将4组人员分到4个不同场馆去,共有种分法,故所有分配方案有:=1080种.44A44222426AACC222426ACC14.将标号为1,2,3,4,5,6的6张卡片放入3个不同的信封中.若每个信封放2张,其中标号为1,2的卡片放入同一信封,则不同的方法共有()(A)12种(B)18种(C)36种(D)54种15.某单位安排7位员工在10月1日至7日值班,每天1人,每人值班1天,若7位员工中的甲、乙排在相邻两天,丙不排在10月1日,丁不排在10月7日,则不同的安排方案共有()A.504种B.960种C.1008种D.1108种解析:分两类:甲乙排1、2号或6、7号共有种方法甲乙排中间,丙排7号或不排7号,共有种方法故共有1008种不同的排法【解析】标号1,2的卡片放入同一封信有种方法;其他四封信放入两个信封,每个信封两个有种方法,共有种,故选B.13C222224AAC1822222413AACCBC16.由1、2、3、4、5、6组成没有重复数字且1、3都不与5相邻的六位偶数的个数是()(A)72(B)96(C)108(D)144解析:先选一个偶数字排个位,有3种选法:①若5在十位或十万位,则1、3有三个位置可排,3=24个②若5排在百位、千位或万位,则1、3只有两个位置可排,共3=12个算上个位偶数字的排法,共计3(24+12)=108个C17.现安排甲、乙、丙、丁、戌5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加。甲、乙不会开车但能从事其他三项工作,丙丁戌都能胜任四项工作,则不同安排方案的种数是()A.152B.126C.90D.54【解析】分类讨论:若有2人从事司机工作,则方案有;若有1人从事司机工作,则方案有种,所以共有18+108=126种B18.在某种信息传输过程中,用4个数字的一个排列(数字允许重复)表示一个信息,不同排列表示不同信息,若所用数字只有0和1,则与信息0110至多有两个对应位置上的数字相同的信息个数为()A.10B.11C.12D.1519.甲组有5名男同学,3名女同学;乙组有6名男同学、2名女同学。若从甲、乙两组中各选出2名同学,则选出的4人中恰有1名女同学的不同选法共有()(A)150种(B)180种(C)300种(D)345种D解:分两类(1)甲组中选出一名女生有种选法;(2)乙组中选出一名女生有种选法.故共有345种选法20.将甲、乙、丙、丁四名学生分到三个不同的班,每个班至少分到一名学生,且甲、乙两名学生不能分到同一个班,则不同分法的种数为()【解析】用间接法解答:四名学生中有两名学生分在一个班的种数是,顺序有种,而甲乙被分在同一个班的有种,所以种数是22.从10名大学生毕业生中选3个人担任村长助理,则甲、乙至少有1人入选,而丙没有入选的不同选法的种数位()A85B56C49D28解析】解析由条件可分为两类:一类是甲乙两人只去一个的选法有:,另一类是甲乙都去的选法有=7,所以共有42+7=49,CC
本文标题:排列组合经典练习
链接地址:https://www.777doc.com/doc-4966321 .html