您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 三角函数相关所有公式
两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α+β)=sinα·cosβ+cosα·sinβsin(α-β)=sinα·cosβ-cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)二倍角公式:sin(2α)=2sinα·cosα=2tan^2(α)/[1+tan^2(α)]cos(2α)=cos^2(α)-sin^2(α)=2cos^2(α)-1=1-2sin^2(α)=(1-tan^2(α))/(1+tan^2(α))tan(2α)=2tanα/[1-tan^2(α)]三倍角公式:sin3α=3sinα-4sin^3(α)cos3α=4cos^3(α)-3cosαtan3α=(3tanα-tan^3(α))÷(1-3tan^2(α))sin3α=4sinα×sin(60-α)sin(60+α)cos3α=4cosα×cos(60-α)cos(60+α)tan3α=4tanα×tan(60-α)tan(60+α)半角公式:sin^2(α/2)=(1-cosα)/2cos^2(α/2)=(1+cosα)/2tan^2(α/2)=(1-cosα)/(1+cosα)tan(α/2)=sinα/(1+cosα)=(1-cosα)/sinα万能代换公式:半角的正弦、余弦和正切公式(降幂扩角公式)sinα=2tan(α/2)/[1+tan^2(α/2)]cosα=[1-tan^2(α/2)]/[1+tan^2(α/2)]tanα=2tan(α/2)/[1-tan^2(α/2)]积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]三角恒等变换的证明方法首先,在三角形ABC中,角A,B,C所对边分别为a,b,c若A,B均为锐角,则在三角形ABC中,过C作AB边垂线交AB于D由CD=asinB=bsinA(做另两边的垂线,同理)可证明正弦定理:a/sinA=b/sinB=c/sinC于是有:AD+BD=cAD=acosA,BD=acosBAD+BD=c代入正弦定理,可得sinC=sin(180-C)=sin(A+B)=sinAcosB+sinBcosA即在A,B均为锐角的情况下,可证明正弦和的公式。利用正弦和余弦的定义及周期性,可证明该公式对任意角成立。于是有cos(A+B)=sin(90-A-B)=sin(90-A)cos(-B)+cos(90-A)sin(-B)=cosAcosB-sinAsinB由此易得以上全部公式诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:弧度制下的角的表示:sin(2kπ+α)=sinα(k∈Z)cos(2kπ+α)=cosα(k∈Z)tan(2kπ+α)=tanα(k∈Z)cot(2kπ+α)=cotα(k∈Z)sec(2kπ+α)=secα(k∈Z)csc(2kπ+α)=cscα(k∈Z)角度制下的角的表示:sin(α+k·360°)=sinα(k∈Z)cos(α+k·360°)=cosα(k∈Z)tan(α+k·360°)=tanα(k∈Z)cot(α+k·360°)=cotα(k∈Z)sec(α+k·360°)=secα(k∈Z)csc(α+k·360°)=cscα(k∈Z)公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:弧度制下的角的表示:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotαsec(π+α)=-secαcsc(π+α)=-cscα角度制下的角的表示:sin(180°+α)=-sinαcos(180°+α)=-cosαtan(180°+α)=tanαcot(180°+α)=cotαsec(180°+α)=-secαcsc(180°+α)=-cscα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotαsec(-α)=secαcsc(-α)=-cscα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:弧度制下的角的表示:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotαsec(π-α)=-secαcsc(π-α)=cscα角度制下的角的表示:sin(180°-α)=sinαcos(180°-α)=-cosαtan(180°-α)=-tanαcot(180°-α)=-cotαsec(180°-α)=-secαcsc(180°-α)=cscα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:弧度制下的角的表示:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotαsec(2π-α)=secαcsc(2π-α)=-cscα角度制下的角的表示:sin(360°-α)=-sinαcos(360°-α)=cosαtan(360°-α)=-tanαcot(360°-α)=-cotαsec(360°-α)=secαcsc(360°-α)=-cscα小结:以上五组公式可简记为:函数名不变,符号看象限.即α+k·360°(k∈Z),﹣α,180°±α,360°-α的三角函数值,等于α的同名三角函数值,前面加上一个把α看成锐角时原函数值的符号。公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:(⒈~⒋)⒈π/2+α与α的三角函数值之间的关系弧度制下的角的表示:sin(π/2+α)=cosαcos(π/2+α)=—sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsec(π/2+α)=-cscαcsc(π/2+α)=secα角度制下的角的表示:sin(90°+α)=cosαcos(90°+α)=-sinαtan(90°+α)=-cotαcot(90°+α)=-tanαsec(90°+α)=-cscαcsc(90°+α)=secα⒉π/2-α与α的三角函数值之间的关系弧度制下的角的表示:sin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsec(π/2-α)=cscαcsc(π/2-α)=secα角度制下的角的表示:sin(90°-α)=cosαcos(90°-α)=sinαtan(90°-α)=cotαcot(90°-α)=tanαsec(90°-α)=cscαcsc(90°-α)=secα⒊3π/2+α与α的三角函数值之间的关系弧度制下的角的表示:sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsec(3π/2+α)=cscαcsc(3π/2+α)=-secα角度制下的角的表示:sin(270°+α)=-cosαcos(270°+α)=sinαtan(270°+α)=-cotαcot(270°+α)=-tanαsec(270°+α)=cscαcsc(270°+α)=-secα⒋3π/2-α与α的三角函数值之间的关系弧度制下的角的表示:sin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanαsec(3π/2-α)=-cscαcsc(3π/2-α)=-secα角度制下的角的表示:sin(270°-α)=-cosαcos(270°-α)=-sinαtan(270°-α)=cotαcot(270°-α)=tanαsec(270°-α)=-cscαcsc(270°-α)=-secα温馨提示:1.在做题目的时候,最好将α看成是锐角。2.k∈Z总结记忆:奇变偶不变,符号看象限。奇偶是针对k而言的,变与不变是针对三角函数名而言。诱导公式记忆口诀※规律总结※上面这些诱导公式可以概括为:对于kπ/2±α(k∈Z)的三角函数值,①当k是偶数时,得到α的同名函数值,即函数名不改变;②当k是奇数时,得到α相应的余函数值,即sin→cos;cos→sin;tan→cot,cot→tan.(奇变偶不变)然后在前面加上把α看成锐角时原函数值的符号。(符号看象限)例如:sin(2π-α)=sin(4·π/2-α),k=4为偶数,所以取sinα。当α是锐角时,2π-α∈(270°,360°),sin(2π-α)<0,符号为“-”。所以sin(2π-α)=-sinα上述的记忆口诀是:奇变偶不变,符号看象限。公式右边的符号为把α视为锐角时,角k·360°+α(k∈Z),-α、180°±α,360°-α所在象限的原三角函数值的符号可记忆水平诱导名不变;符号看象限。#各种三角函数在四个象限的符号如何判断,也可以记住口诀“一全正;二正弦(余割);三两切;四余弦(正割)”.这十二字口诀的意思就是说:第一象限内任何一个角的四种三角函数值都是“+”;第二象限内只有正弦是“+”,其余全部是“-”;第三象限内切函数是“+”,弦函数是“-”;第四象限内只有余弦是“+”,其余全部是“-”.上述记忆口诀,一全正,二正弦,三内切,四余弦#还有一种按照函数类型分象限定正负:函数类型第一象限第二象限第三象限第四象限正弦...........+............+............—............—........余弦...........+............—............—............+........正切...........+............—............+............—........余切...........+............—............+............—........奇变偶不变,符号看象限辅助角公式对于acosx+bsinx型函数,我们可以如此变形acosx+bsinx=√(a^2+b^2)(acosx/√(a^2+b^2)+bsinx/√(a^2+b^2)),令点(b,a)为某一角φ终边上的点,则sinφ=a/√(a^2+b^2),cosφ=b/√(a^2+b^2)∴acosx+bsinx=√(a^2+b^2)sin(x+arctan(a/b))
本文标题:三角函数相关所有公式
链接地址:https://www.777doc.com/doc-4992865 .html