您好,欢迎访问三七文档
第1页共11页高一下期数学知识点一.三角恒等变换1、两角和与差的正弦、余弦和正切公式:⑴coscoscossinsin;⑵coscoscossinsin;⑶sinsincoscossin;⑷sinsincoscossin;⑸tantantan1tantan(tantantan1tantan);⑹tantantan1tantan(tantantan1tantan).2、二倍角的正弦、余弦和正切公式:⑴sin22sincos.222)cos(sincossin2cossin2sin1⑵2222cos2cossin2cos112sin升幂公式2sin2cos1,2cos2cos122降幂公式2cos21cos2,21cos2sin2.⑶22tantan21tan.3、(辅助角公式)合一变形把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的BxAy)sin(形式。22sincossin,其中tan.资源网二.数列基本概念1.数列的定义:按照一定顺序排列的一列数称为数列,数列中的每个数称为该数列的项.2.通项公式:如果数列na的第n项与序号之间可以用一个式子表示,那么这个公式叫做这个数列的通项公式,即)(nfan.3.递推公式:如果已知数列na的第一项(或前几项),且任何一项na与它的前一项1na(或前几项)间的关系可以用一个式子来表示,即)(1nnafa或),(21nnnaafa,那么这个式子叫做数列na的递推公式.如数列na中,12,11nnaaa,其中12nnaa是数列na的递推2tan12tan1cos;2tan12tan2sin:222αααααα万能公式第2页共11页公式.4.数列的前n项和与通项的公式①nnaaaS21;②)2()1(11nSSnSannn.5.数列的表示方法:解析法、图像法、列举法、递推法.6.数列的分类:有穷数列,无穷数列;递增数列,递减数列,摆动数列,常数数列;有界数列,无界数列.①递增数列:对于任何Nn,均有nnaa1.②递减数列:对于任何Nn,均有nnaa1.③摆动数列:例如:.,1,1,1,1,1④常数数列:例如:6,6,6,6,…….⑤有界数列:存在正数M使NnMan,.⑥无界数列:对于任何正数M,总有项na使得Man.等差数列1.等差数列的概念如果一个数列从第二项起,每一项与它前一项的差等于同一个常数d,这个数列叫做等差数列,常数d称为等差数列的公差.2.通项公式与前n项和公式⑴通项公式dnaan)1(1,1a为首项,d为公差.⑵前n项和公式2)(1nnaanS或dnnnaSn)1(211.3.等差中项如果bAa,,成等差数列,那么A叫做a与b的等差中项.即:A是a与b的等差中项baA2a,A,b成等差数列.4.等差数列的判定方法⑴定义法:daann1(Nn,d是常数)na是等差数列;⑵中项法:212nnnaaa(Nn)na是等差数列.5.等差数列的常用性质⑴数列na是等差数列,则数列pan、npa(p是常数)都是等差数列;⑵在等差数列na中,等距离取出若干项也构成一个等差数列,即,,,,32knknknnaaaa为等差数列,公差为kd.⑶dmnaamn)(;banan(a,b是常数);bnanSn2(a,b是常数,0a)⑷若),,,(Nqpnmqpnm,则qpnmaaaa;⑸若等差数列na的前n项和nS,则nSn是等差数列;⑹当项数为)(2Nnn,则nnaaSSndSS1,奇偶奇偶;当项数为)(12Nnn,则nnSSaSSn1,奇偶偶奇.等比数列1.等比数列的概念如果一个数列从第二项起,每一项与它前一项的比等于同一个常数)0(qq,这个数列叫做等比数第3页共11页列,常数q称为等比数列的公比.2.通项公式与前n项和公式⑴通项公式:11nnqaa,1a为首项,q为公比.⑵前n项和公式:①当1q时,1naSn②当1q时,qqaaqqaSnnn11)1(11.3.等比中项如果bGa,,成等比数列,那么G叫做a与b的等比中项.即:G是a与b的等差中项a,A,b成等差数列baG2.4.等比数列的判定方法⑴定义法:qaann1(Nn,0q是常数)na是等比数列;⑵中项法:221nnnaaa(Nn)且0nana是等比数列.5.等比数列的常用性质⑴数列na是等比数列,则数列npa、npa(0q是常数)都是等比数列;⑵在等比数列na中,等距离取出若干项也构成一个等比数列,即,,,,32knknknnaaaa为等比数列,公比为kq.⑶),(Nmnqaamnmn⑷若),,,(Nqpnmqpnm,则qpnmaaaa;⑸若等比数列na的前n项和nS,则kS、kkSS2、kkSS23、kkSS34是等比数列.三.平面向量1.向量的概念:既有大小又有方向的量叫向量,有二个要素:大小、方向.2.向量的表示方法:①用有向线段表示-----AB(几何表示法);②用字母a、b等表示(字母表示法);③平面向量的坐标表示(坐标表示法):分别取与x轴、y轴方向相同的两个单位向量i、j作为基底。任作一个向量a,由平面向量基本定理知,有且只有一对实数x、y,使得axiyj,),(yx叫做向量a的(直角)坐标,记作(,)axy,其中x叫做a在x轴上的坐标,y叫做a在y轴上的坐标,特别地,i(1,0),j(0,1),0(0,0)。22axy;若),(11yxA,),(22yxB,则1212,yyxxAB,222121()()ABxxyy3.零向量、单位向量:第4页共11页①长度为0的向量叫零向量,记为0;②长度为1个单位长度的向量,叫单位向量.(注:||aa就是单位向量)4.平行向量:①方向相同或相反的非零向量叫平行向量;②我们规定0与任一向量平行.向量a、b、c平行,记作a∥b∥c.共线向量与平行向量关系:平行向量就是共线向量.性质://(0)(abbab是唯一)||babaab0,与同向方向---0,与反向长度---1221//(0)0abbxyxy(其中1122(,),(,)axybxy)5.相等向量和垂直向量:①相等向量:长度相等且方向相同的向量叫相等向量.②垂直向量——两向量的夹角为2性质:0abab.12120abxxyy(其中1122(,),(,)axybxy)6.向量的加法、减法:①求两个向量和的运算,叫做向量的加法。向量加法的三角形法则和平行四边形法则。平行四边形法则:ACab(起点相同的两向量相加,常要构造平行四边形)DBab三角形法则,加法首尾相连减法终点相连方向指向被减数——加法法则的推广:112nABABBB……1nnBB即n个向量12,,aa……na首尾相连成一个封闭图形,则有12aa……0na②向量的减法向量a加上的b相反向量,叫做a与b的差。即:ab=a+(b);第5页共11页差向量的意义:OA=a,OB=b,则BA=ab③平面向量的坐标运算:若11(,)axy,22(,)bxy,则ab),(2121yyxx,ab),(2121yyxx,(,)axy。④向量加法的交换律:a+b=b+a;向量加法的结合律:(a+b)+c=a+(b+c)⑤常用结论:(1)若1()2ADABAC,则D是AB的中点(2)或G是△ABC的重心,则0GAGBGC7.向量的模:1、定义:向量的大小,记为|a|或|AB|2、模的求法:若(,)axy,则|a|22xy若1122(,),(,)AxyBxy,则|AB|222121()()xxyy3、性质:(1)22||aa;22||(0)||abbab(实数与向量的转化关系)(2)22||||abab,反之不然(3)三角不等式:||||||||||ababab(4)||||||abab(当且仅当,ab共线时取“=”)即当,ab同向时,||||abab;即当,ab同反向时,||||abab(5)平行四边形四条边的平方和等于其对角线的平方和,即22222||2||||||ababab8.实数与向量的积:实数λ与向量a的积是一个向量,记作:λa(1)|λa|=|λ||a|;(2)λ0时λa与a方向相同;λ0时λa与a方向相反;λ=0时λa=0;第6页共11页(3)运算定律λ(μa)=(λμ)a,(λ+μ)a=λa+μa,λ(a+b)=λa+λb交换律:abba;分配律:()abcacbc.(a)·b=(a·b)=a·(b);①不满足结合律:即()()abcabc②向量没有除法运算。如:abcbac,2aaabb都是错误的(4)已知两个非零向量,ab,它们的夹角为,则ab=||||cosab坐标运算:1122(,),(,)axybxy,则1212abxxyy(5)向量ABa在轴l上的投影为:︱a︱cos,(为an与的夹角,n为l的方向向量)其投影的长为//||anABn(||nn为n的单位向量)(6)ab与的夹角和ab的关系:(1)当0时,ab与同向;当时,ab与反向(2)为锐角时,则有0,abab不共线;为钝角时,则有0,abab不共线9.向量共线定理:向量b与非零向量a共线(也是平行)的充要条件是:有且只有一个非零实数λ,使b=λa。10.平面向量基本定理:如果1e,2e是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a,有且只有一对实数λ1,λ2使a=λ11e+λ22e。(1)不共线向量1e、2e叫做表示这一平面内所有向量的一组基底;(2)基底不惟一,关键是不共线;第7页共11页(3)由定理可将任一向量a在给出基底1e、2e的条件下进行分解;(4)基底给定时,分解形式惟一.λ1,λ2是被a,1e,2e唯一确定的数量。向量坐标与点坐标的关系:当向量起点在原点时,定义向量坐标为终点坐标,即若A(x,y),则OA=(x,y);当向量起点不在原点时,向量AB坐标为终点坐标减去起点坐标,即若A(x1,y1),B(x2,y2),则AB=(x2-x1,y2-y1)11.向量a和b的数量积:①a·b=|a|·|b|cos,其中∈[0,π]为a和b的夹角。②|b|cos称为b在a的方向上的投影。③a·b的几何意义是:b的长度|b|在a的方向上的投影的乘积,是一个实数(可正、可负、也可是零),而不是向量。④若a=(1x,1y),b=(x2,2y),则2121yyxxba⑤运算律:a·b=b·a,(λa)·b=a·(λb)=λ(a·b),(a+b)·c=a·c+b·c。⑥a和b的夹角公式:cos=abab=222221212121yxyxyyxx⑦2aaa|a|2=x2+y2,或|a|=222ayx⑧|a·b|≤|a|·|b|。)3,3(3213
本文标题:高一数学下知识点
链接地址:https://www.777doc.com/doc-4999687 .html