您好,欢迎访问三七文档
当前位置:首页 > 行业资料 > 能源与动力工程 > 阿贝成像与空间滤波实验报告
班级09级1班组别1组姓名巩辰学号1090600004日期3月1日指导教师【实验题目】阿贝成像原理和空间滤波【实验目的】1.了解透镜孔径对成像的影响和简单的空间滤波;2.掌握在相干光条件下调节多透镜系统的共轴;3.验证和演示阿贝成像原理,加深对傅里叶光学中空间频率、空间频谱和空间滤波概念的理解;4.初步了解简单的空间滤波在光信息处理中的实际应用.【实验仪器与用具】GP-78光具座JSQ-250氦氖激光器及电源物(光栅)透镜×3(f=15mm、f=70mm、f=225mm)光阑片【实验原理】1、关于傅里叶光学变换设有一个空间二维函数yxg,,其二维傅里叶变换为:dxdyyfxfiyxgyxgFffGyxyx2exp,,,式中xf、yf分别为x、y方向的空间频率,yxg,是yxffG,的逆傅里叶变换,即:yxyxyxyxdfdfyfxfiffGffGFyxg2exp,,),(1该式表示:任意一个空间函数yxg,可表示为无穷多个基元函数yfxfiyx2exp的线性叠加。yxyxdfdfffG,是相应于空间频率为xf、yf的基元函数的权重,yxffG,称为yxg,的空间频谱。理论上可以证明,对在焦距为f的会聚透镜的前焦面上放一振幅透过率为yxg,的图像作为物,并用波长为的单色平面波垂直照明,则在透镜后焦面yx,上的复振幅分布就是yxg,的傅里叶变换yxffG,,其中空间频率xf、yf与坐标x、y的关系为:fyffxfyx故yx,面称为频谱面(或傅氏面),由此可见,复杂的二维傅里叶变换可以用一透镜来实现,称为光学傅里叶变换,频谱面上的光强分布,也就是物的夫琅禾费衍射图。2、关于阿贝成像原理阿贝(E.Abbe)在1873年提出了相干光照明下显微镜的成像原理。他认为,在相干光照明下,显微镜的成像可分为两个步骤:第一步是通过物的衍射光在物镜的后焦面上形成一个衍射图;第二步是物镜后焦面上的衍射图复合为(中间)像,这个像可以通过目镜观察到。成像的这两个步骤本质上就是两次傅里叶变换。第一步把物面光场的空间分布yxg,变为频谱面上空间频率分布yxffG,,第二步则是再作一次变换,又将yxffG,还原到空间分布yxg,。图6-3-1显示了成像的两个步骤。我们假设物是一个一维光栅,单色平行光垂直照在光栅上,经衍射分解成为不同方向的很多束平行光(每一束平行光相应于一定的空间频率),经过物镜分别聚焦在后焦面上形成点阵。然后代表不同空间频率的光束又重新在像面上复合而成像。如果这两次变换完全是理想的,即信息没有任何损失,则像和物应完全相似(可能有放大或缩小),但一般说来像和物不可能完全相似,这是由于透镜的孔径是有限的,总有一部分衍射角度较大的高次成分(高频信息)不能进入到物镜而被丢弃了,所以像的信息总是比物的信息要少一些。高频信息主要反映了物的细节,如果高频信息受到了孔径的限制而不能达到像平面,则无论显微镜有多大的放大倍数,也不可能在像平面上显示出这些高频信息所反映的细节,这是显微镜分辨率受到限制的根本原因。特别是当物的结构非常精细(如很密的光栅)或物镜孔径非常小时,有可能只有0级衍射(空间频率为0)能通过,则在像平面上完全不能形成像.3、空间滤波根据上面讨论,透镜成像过程可看作是两次傅里叶变换,即从空间函数yxg,变为频谱函数yxffG,,再变回到空间函数yxg,(忽略放大率)。显然如果我们在频谱面(即透镜的后焦面)上放一些不同结构的光阑,以提取(或摒弃)某些频段的物信息,则必然使像面上的图像发生相应的变化,这样的图像处理称为空间滤波,频谱面上这种光阑称为滤波器。滤波器使频谱面上一个或一部分频率分量通过,而挡住其它频率分量,从而改变了像面上图像的频率成分。例如光轴上的圆孔光栏可以作为一个低通滤波器,而圆屏就可以用作为高通滤波器。【实验光路】【实验内容与步骤】1、共轴光路调节在光具座上将小圆孔光阑靠近激光管的输出端,上下左右调节激光管,使激光束能穿过小孔;然后移远小孔,如光束偏离光阑,调节激光管的仰俯,再使激光能穿过小孔,重新将光阑移近,反复调节,直至小孔光阑在光具座上平移时,激光束能通过小孔光阑。2、阿贝成像原理实验如实验光路图在物平面上放上一维光栅,用激光器发出的细锐光束垂直照到光栅上,用一短焦距薄透镜(6~10cm)组装一个放大的成像系统,调节透镜位置,使光栅狭缝清晰地成像在像平面屏上,那么在频谱面上的衍射点如图所示。在频谱面上放上可调狭缝或滤波模板,使通过的衍射点如下图所示:(a)全部;(b)零级;(c)零和1级;分别记录像面特点。3、阿贝一波特实验(方向滤波)(1)光路不变,将一维光栅的物换成二维正交光栅,在频谱面上可以观察到二维分立的光点阵(频谱),像面上可以看到放大了的正交光栅像,测出像面上的网格间距。(2)在频谱面放上可旋转狭缝光阑(方向滤波器),在下述情况:(a)只让光轴上水平的一行频谱分量通过;(b)只让光轴上垂直的一行频谱分量通过;(c)只让光轴上45°的一行频谱分量通过。记录像面上的图像变化、像面上条纹间距,并做出适当的解释。将所观测的现象、数据添入表中。方向滤波可去除某些方向的频谱或仅让某些方向的频谱通过,以突出图像的某些特征。4.空间滤波按图布置好光路。用显微物镜和准直透镜L1组成平行光系统。以扩展后的平行激光束照明物体,以透镜L2将此物成像于较远处的屏上,物使用带有网格的网格字(中央透光的“光”字和细网格的叠加),则在屏Q上出现清晰的放大像,能看清字及其网格结构。由于网格为周期性的空间函数,它们的频谱是有规律排列的分立的点阵,而字迹是一个非周期性的低频信号,它的频谱就是连续的。【实验结论】1.解释阿贝成像实验傅氏面上通过的衍射像面图像记录a全部中间亮且最长、两侧亮度渐低且渐短的竖条纹b0级红色边缘模糊亮斑c0、±1级竖条纹组成的红色亮斑2.解释阿贝-波特实验傅氏面上通过的衍射像面图像记录a全部红色正交线条纹b中点红色边缘模糊亮斑c横线红色竖条纹,中间最亮最长,两侧变暗并且变短d竖线红色横条纹,中间最亮最长,两侧变暗并且变短e左斜线红色右斜条纹,中间最亮最长,两侧变暗并且变短3.空间滤波像屏上出现一放大倒立红色“光”字【思考题】1.阿贝关于“二次衍射成像”的物理思想是什么在相干光照明下,显微镜的成像可分为两个步骤:第一步是通过物的衍射光在物镜的后焦面上形成一个衍射图;第二步是物镜后焦面上的衍射图复合为(中间)像,这个像可以通过目镜观察到。2.何谓空间频谱?通过怎样的实验方法来观察频谱分布对成像所产生的影响?空间频谱:二维空间分布函数g(x,y)的傅立叶变换式G(f(x),f(y))称为函数g(x,y)的空间频谱。在频谱面上放上可调狭缝或滤波模板,挡去频谱某些空间的频率成分,则会使像发生变化。3.何谓空间滤波?空间滤波器应放在何处?如何确定频谱面的位置?空间滤波:一种采用滤波处理的影像增强方法。其理论基础是空间卷积。目的是改善影像质量,包括去除高频噪声与干扰,及影像边缘增强、线性增强以及去模糊等。分为低通滤波(平滑化)、高通滤波(锐化)和带通滤波。处理方法有计算机处理(数字滤波)和光学信息处理两种。空间滤波器应放在频谱面上。频谱面即透镜的后焦面,4.如何从阿贝成像原理来理解显微镜或望远镜的分辨率受限制的原因?能不能用增加放大率的办法来提高其分辨率?可见光由于其波动特性会发生衍射,因而光束不能无限聚焦,一些频率信息必定会受到孔径限制。根据这个阿贝定律,可见光能聚焦的最小直径是光波波长的三分之一,也就是200纳米。一个多世纪以来,200纳米的“阿贝极限”一直被认为是光学显微镜理论上的分辨率极限,所以不能用增加放大率的办法提高分辨率。望远镜放大倍数与入射孔径对分辨目标细节也有匹配关系。如果入射孔径小,倍数再高也对分辨细节没有帮助。
本文标题:阿贝成像与空间滤波实验报告
链接地址:https://www.777doc.com/doc-5002700 .html