您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 质量控制/管理 > 信号与系统课件ppt
信号与系统Signals&SystemA.V.Oppenheim2ndEdition概论•信号就是函数。离散时间与连续时间函数。(但不是所有的的函数都适合做信号,常见信号及其运算。)•系统就是对信号的变换。(变换海洋中的一滴水,特别的一类:线性移不变系统—LTI系统)•给定信号和系统求变换后的信号。•给定变换前后的信号,确定系统。•给定信号和系统直接求系统的响应—时域分析。(在LTI前提下信号与系统的统一。)•信号的变换分析:傅立叶级数、傅立叶变换、拉氏变换、z变换。(送你一双看穿表象的慧眼。)•抽样定理(风马牛不相及的两种信号之间的联系,数字化时代的基石。)信号与系统问题无处不在•什么是信号?•信号是消息的表现形式,消息则是信号的具体内容。•什么是系统?•系统是物理器件的集合,对给定的信号做出反应而产生出另外的信号。•系统其实就是一个信号转换器。信号的描述:数学上:信号表示为一个或多个变量的函数形态上:信号表现为一种波形自变量:时间、位移周期、频率、相位、幅度信号的分类:函数自变量数目:一维信号和多维信号函数自变量取值的连续性和离散性:连续时间信号和离散时间信号函数周期性与否:周期信号和非周期信号•信号的描述•信号的自变量变换•基本信号•系统及其数学模型•系统的性质本章的基本内容:1.1连续时间与离散时间信号(Continuous-TimeandDiscrete-TimeSignals)一.信号:信号可以描述范围极其广泛的物理现象。信号可以分为确知信号与随机信号,也可以分为连续时间信号与离散时间信号。确知信号可以表示成一个或几个自变量的函数。作为信号分析的基础,本课程只研究确知信号。连续时间信号的例子:离散时间信号的例子:连续时间信号在离散时刻点上的样本可以构成一个离散时间信号。二.信号的能量与功率:12[,]tt212()ttExtdt连续时间信号在区间的平均功率定义为:12[,]tt212211()ttPxtdttt连续时间信号在区间的能量定义为:离散时间信号在区间的能量定义为212()nnnExn离散时间信号在区间的平均功率为12[,]nn212211()1nnnPxnnn12[,]nn在无限区间上也可以定义信号的总能量:dtdtEtxtxTTT)()(lim22•连续时间情况下:•离散时间情况下:nNNnNnxnxE22)()(lim在无限区间内的平均功率可定义为:NNnNnxNP2121)(lim21lim2()TTTPdtTxt1.2自变量变换TransformationsoftheIndependentVariable)一.由于信号可视为自变量的函数,当自变量改变时,必然会使信号的特性相应地改变。()xt0()xtt当时,信号向右平移00t0t00t时,信号向左平移0t当时,信号向右平移00n0n00n时,信号向左平移0||n1.时移变换:ShiftofSignals2.反转变换:ReflectionofSignals()xt()xt信号以为轴呈镜像对称。0t与连续时间的情况相同。3.尺度变换:Scaling()xt()xat1a时,是将在时间上压缩a倍()xat()xt01a时,是将在时间上扩展1/a倍。()xat()xt由于离散时间信号的自变量只能取整数值,因而尺度变换只对连续时间信号而言。0123456211232n2220123n例如:显然上例中,是从中依次抽出自变量取偶数时的各点而构成的。这一过程称为对信号的抽取(decimation)11()()(3)22xtxtxt综合示例:由1()(3)2xtxt01()xtt10t11/23/20t11/21/61()2xt1(3)2xt12tt3tt做法一:可视为周期信号,但它的基波周期没有确定的定义。二.周期信号与非周期信号:周期信号:()()xtTxt满足此关系的正实数(正整数)中最小的一个,称为信号的基波周期()。0T0N()xtc可以视为周期信号,其基波周期01N非周期信号周期信号连续时间周期信号离散时间周期信号三.奇信号与偶信号:oddSignalsandevenSignals如果有或则称该信号为奇信号(镜像奇对称)()()xtxt如果有或则称该信号是偶信号(镜像偶对称)()()xtxt任何信号都能分解成一个偶信号与一个奇信号之和。对实信号有:()()()eoxtxtxt1()[()()]2extxtxt1()[()()]2oxtxtxt其中其中0-1-21212()xtt例1:-2210()exttt()oxt-111-1例2.信号的奇偶分解:1.3复指数信号与正弦信号(ExponentialandSinusoidalSignals)一.连续时间复指数信号()atxtCe其中C,a为复数1.实指数信号:C,a为实数0a呈单调指数上升。0a呈单调指数下降。0a()xtC是常数。2.周期性复指数信号:0aj,不失一般性取1C000()cossinjtxtetjt实部与虚部都是正弦信号。()xt显然是周期的,其基波周期为:002T03、正弦信号0()cos()xtAt0022jtjtjjAAeeee其基波周期为,基波频率为,当时通常称为直流信号。002T0004.一般复指数信号:()atxtCe其中C,a为复数令则jCCe0arj00()()jtjtjrtrtxtCeeeCee该信号可看成是振幅按实指数信号规律变化的周期性复指数信号。它的实部与虚部都是振幅呈实指数规律变化的正弦振荡。当时,是指数增长的正弦振荡。时,是指数衰减的正弦振荡。时,是等幅的正弦振荡。0r0r0r101101二.离散时间复指数信号与正弦信号,C一般为复数1.实指数信号:均为实数,C当时,呈单调指数增长时,呈单调指数衰减时,呈摆动指数衰减时,呈摆动指数增长正弦信号:)cos(][0nAnxnCenx][njenx0][njnenj00sincos0njnjeAeAnA0022)cos(0njjnjjeeAeeA00)2()2(离散时间正弦信号不一定是周期的,这是与连续时间正弦信号的重大区别。0离散时间信号频率表示为,量纲是弧度。3.一般复指数信号:jCCe0je00[cos()sin()]nCnjn令则实部与虚部都是幅度按指数规律变化的正弦序列。当时幅度呈指数增长,时幅度呈指数衰减。1111离散时间复指数序列不一定是周期性的,要具有周期性,必须具备一定条件。0000()jnNjnjNjneeee01jNe即02Nm离散时间复指数序列的周期性设则有:a)表明只有在与的比值是一个有理数时,才具有周期性。020jne0()jtxte0对,当时,对应的信号振荡频率越来越高不会发生逆转。而对,当时,只要是变化的范围,如,则由于,总是会有。0jne0002kk21jkne0kjnjnee这表明:当变化时,并非所有的都是互相独立的。离散时间信号的有效频率范围只有区间。其中,处都对应最低频率;或处都对应最高频率。200jne02k2k在满足周期性要求的情况下,总能找到互为质数的两个正整数m,N使得:02mN(m与N无公因子)此时即为该信号的周期,也称为基波周期,因此该信号的基波频率为:02Nm02Nm离散时间周期性复指数信号也可以构成一个成谐波关系的信号集。2()jknNkne0,1,2k该信号集中的每一个信号都是以N为周期的,N是它们的基波周期。称为直流分量,称为基波分量。0k1k称为二次谐波分量等等。2k每个谐波分量的频率都是的整数倍。2N称为直流分量,称为基波分量0k1k称为二次谐波分量等等。2k每个谐波分量的频率都是的整数倍。2N特别值得指出的是:该信号集中的所有信号并不是全部独立的。()()kNknn这表明:该信号集中只有N个信号是独立的。即当k取相连的N个整数时所对应的各个谐波是彼此独立的。因此,由N个独立的谐波分量就能构成一个完备的正交函数集。这是与连续时间的情况有重大区别的显然有:信号和的比较•不同,信号不同•对任何信号都是周期的•基波频率•基波周期:T0•频差的整数倍时,信号相同•仅当时,信号是周期的•基波频率•基波周期:N2002mN002T02Nm00jte0jne一.离散时间单位脉冲与单位阶跃1.单位脉冲序列:1.4单位冲激与单位阶跃(TheUnitImpulseandUnitStepFunctions)01n2.单位阶跃序列:与之间的关系:一次差分n10具有提取信号中某一点的样值的作用。1nk1.单位阶跃()ut()ut10,,0t0t10()utt二.连续时间单位阶跃与单位冲激定义:2.单位冲激()t定义:定义的不严密性,由于在不连续,因而在该处不可导。()()duttdt()()tutd()ut0t定义如图所示:()ut10()utt0()ut()ut显然当时可认为()()duttdt()t01t0lim()()tt()t即可视为一个面积始终为1的矩形,当其宽度趋于零时的极限。()t表示为10()tt00()tt0tt1矩形面积称为冲激强度。()1tdt0()()()tutdtd显然有:()()(0)()xttxt000()()()()xtttxttt0lim0t1(0)x(0)()xt()t也具有提取连续时间信号样本的作用。)()()(tututG)()()(001ttuttutGG(t)0tG1(t)0t0t用阶跃表示矩形脉冲1.5连续时间与离散时间系统(Continuous-TimeandDiscrete-TimeSystems)一.系统系统是非常广泛的概念。通常将若干相互依赖,相互作用的事物所组成的具有一定功能的整体称为系统。它可以是物理系统,也可以是非物理系统。输入信号与输出响应都是连续时间信号的系统。连续时间系统()xt()yt连续时间系统:离散时间系统离散时间系统:输入信号与输出响应都是离散时间信号的系统。系统分析的基本思想:1.根据工程实际应用,对系统建立数学模型。通常表现为描述输入-输出关系的方程。2.建立求解这些数学模型的方法。为此要求所研究的系统具有以下两点重要特性:(1)这一类系统应该具有一些性质和结构,通过它们能够对系统的行为作出透彻的描述,并能对这一类系统建立有效的分析方法(即可行性)。本课程所研究的对象——LTI(LinearTime-InvariantSystems)系统就是这样的一类系统。2)很多工程实际中的系统都能利用这类系统的方法建模(即具有普遍性)。二.系统的互联(InterconnectionofSystems)现实中的系统是各式各样的,其复杂程度也大相径庭。但许多系统都可以分解为若干个简单系统的组合。可以通过对简单系统(子系统)的分析并通过子系统互联而达到分析复杂系统的目的。也可以通过将若干个简单子系统互联起来而实现一个相对复杂的系统。这一思想对系统分析和系统综合都是十分重要的。2.并联(parallelinterconnection)1.级联(cascadeinterconnection)ⅠⅡ()xt()ytⅠⅡ()xt()yt3.反馈联
本文标题:信号与系统课件ppt
链接地址:https://www.777doc.com/doc-5009803 .html