您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 企业财务 > 人教版小学数学六年级下册-鸽巢问题-教学设计
1《鸽巢问题》教学设计教学内容:教材第68-70页例1、例2,及“做一做”的第1题,及第71页练习十三的1-2题。教学目标:1、了解“鸽巢问题”的特点,理解“鸽巢原理”的含义。使学生学会用此原理解决简单的实际问题。2、经历探究“鸽巢原理”的学习过程,体验观察、猜测、实验、推理等活动的学习方法,渗透数形结合的思想。3、通过用“鸽巢问题”解决简单的实际问题,激发学生的学习兴趣,使学生感受数学的魅力。教学重、难点:重点:引导学生把具体问题转化成“鸽巢问题”。难点:找出“鸽巢问题”解决的窍门进行反复推理。教学准备:课件。教学过程:一、情境导入:老师组织学生做“抢凳子的游戏”。请4位同学上来,摆开3张凳子。老师宣布游戏规则:4位同学跟随着音乐(甩葱歌)围着凳子转圈,音乐“停”的时候,四个人每个人都必须坐在凳子上。教师背对着游戏的学生。师:都坐下了吗?老师不用看,也知道肯定有一张凳子上至少坐着2位同学。老师说得对吗?师:老师为什么说得这么肯定呢?其实这里面蕴含一个深奥的道理,今天我们就来探究这个问题——鸽巢问题(板书课题)。二、探究新知:教学例1.(课件出示例题1情境图)思考问题:把4支铅笔放进3个笔筒中,不管怎么放,总有1个笔筒里至少有2支铅笔。为什么呢?“总有”和“至少”是什么意思?2学生通过操作发现规律→理解关键词的含义→探究证明→认识“鸽巢问题”的学习过程来解决问题。操作发现规律:通过吧4支铅笔放进3个笔筒中,可以发现:不管怎么放,总有1鸽笔筒里至少有2支铅笔。理解关键词的含义:“总有”和“至少”是指把4支铅笔放进3个笔筒中,不管怎么放,一定有1个笔筒里的铅笔数大于或等于2支。探究证明。方法一:用“枚举法”证明。方法二:用“分解法”证明。把4分解成3个数。由图可知,把4分解成3个数,与枚举法相似,也有4中情况,每一种情况分得的3个数中,至少有1个数是不小于2的数。方法三:用“假设法”证明。通过以上几种方法证明都可以发现:把4只铅笔放进3个笔筒中,无论怎么放,总有1个笔筒里至少放进2只铅笔。认识“鸽巢问题”像上面的问题就是“鸽巢问题”,也叫“抽屉问题”。在这里,4支铅笔是要分放的物体,就相当于4只“鸽子”,“3个笔筒”就相当于3个“鸽巢”或“抽屉”,把此问题用“鸽巢问题”的语言描述就是把4只鸽子放进3个笼子,总有1个笼子里至少有2只鸽子。这里的“总有”指的是“一定有”或“肯定有”的意思;而“至少”指的是最少,即在所有方法中,放的鸽子最多的那个“笼子”里鸽子“最少”的个数。小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放进2支铅笔。如果放的铅笔数比笔筒的数量多2,那么总有1个笔筒至少放2支铅笔;如果放的铅笔比笔筒的数量多3,那么总有1个笔筒里至少放2只铅笔……小结:只要放的铅笔数比笔筒的数量多,就总有1个笔筒里至少放23支铅笔。归纳总结:鸽巢原理(一):如果把m个物体任意放进n个抽屉里(mn,且n是非零自然数),那么一定有一个抽屉里至少放进了放进了2个物体。2、教学例2(课件出示例题2情境图)思考问题:(一)把7本书放进3个抽屉,不管怎么放,总有1个抽屉里至少有3本书。为什么呢?(二)如果有8本书会怎样呢?10本书呢?学生通过“探究证明→得出结论”的学习过程来解决问题(一)。探究证明。方法一:用数的分解法证明。把7分解成3个数的和。把7本书放进3个抽屉里,共有如下8种情况:由图可知,每种情况分得的3个数中,至少有1个数不小于3,也就是每种分法中最多那个数最小是3,即总有1个抽屉至少放进3本书。方法二:用假设法证明。把7本书平均分成3份,7÷3=2(本)......1(本),若每个抽屉放2本,则还剩1本。如果把剩下的这1本书放进任意1个抽屉中,那么这个抽屉里就有3本书。得出结论。通过以上两种方法都可以发现:7本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。学生通过“假设分析法→归纳总结”的学习过程来解决问题(二)。用假设法分析。8÷3=2(本)......2(本),剩下2本,分别放进其中2个抽屉中,使其中2个抽屉都变成3本,因此把8本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进3本书。10÷3=3(本)......1(本),把10本书放进3个抽屉中,不管怎么放,总有1个抽屉里至少放进4本书。4归纳总结:综合上面两种情况,要把a本书放进3个抽屉里,如果a÷3=b(本)......1(本)或a÷3=b(本)......2(本),那么一定有1个抽屉里至少放进(b+1)本书。鸽巢原理(二):古国把多与kn个的物体任意分别放进n个空抽屉(k是正整数,n是非0的自然数),那么一定有一个抽屉中至少放进了(k+1)个物体。三、巩固练习1、完成教材第70页的“做一做”第1题。学生独立思考解答问题,集体交流、纠正。2、完成教材第71页练习十三的1-2题。学生独立思考解答问题,集体交流、纠正。四、课堂总结师:通过这节课的学习你有什么收获?
本文标题:人教版小学数学六年级下册-鸽巢问题-教学设计
链接地址:https://www.777doc.com/doc-5016498 .html