您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 机械/模具设计 > 第二章投影的基本知识和点、线、面的投影
19第二章投影的基本知识和点、线、面的投影基本要求:建立投影的概念,掌握正投影的基本性质;掌握点线面的投影特性;根据投影能判断出点、线、面的关系。主要内容:1、投影的基本知识;2、点的投影;3、直线的投影;4、平面的投影。2.1投影的基本知识一、内容:1、投影的基本概念;2、投影的类型;3、工程中常用的投影图。二、要求及重点:要求掌握投影的基本概念;了解投影的类型、用途。三、教学方式:通过实物及日常生活中的现象,使学生掌握投影的基本概念;了解投影的类型、用途。202.1投影的基本知识一、投影的概念1、在日常生活中,经常看到空间一个物体在光线照射下在某一平面产生影子的现象,抽象后的“影子”称为投影。2、产生投影的光源称为投影中心S,接受投影的面称为投影面,连接投影中心和形体上的点的直线称为投影线。形成投影线的方法称为投影法(图2-1)。(a)(b)图2-1中心投影法图2-2平行投影法二、投影的类型投影法分为中心投影法和平行投影法两大类。1、中心投影法光线由光源点发出,投射线成束线状。投影的影子(图形)随光源的方向和距形体的距离而变化。光源距形体越近,形体投影越大,它不反映形体的真实大小。2、平行投影法光源在无限远处,投射线相互平行,投影大小与形体到光源的距离无关,如图2-2所示。平行投影法又可根据投射线(方向)与投影面的方向(角度)分为斜投影(a)和正投影(b)两种。(1)斜投影法:投射线相互平行,但与投影面倾斜,如图2-2(a)所示。(2)正投影法:投射线相互平行且与投影面垂直,如图2-2(b)所示。用正投影法得到的投影叫正投影。三、工程上常用的投影图1、透视图用中心投影法将空间形体投射到单一投影面上得到的图形称为透视图,如图2-3。透视图与人的视觉习惯相符,能体现近大远小的效果,所以形象逼真,具有丰富的立体感,但作图比较麻烦,且度量性差,常用于绘制建筑效果图。21图2-3透视图图2-4轴测图2、轴测图将空间形体正放用斜投影法画出的图或将空间形体斜放用正投影法画出的图称为轴测图。如图2-4所示,形体上互相平行且长度相等的线段,在轴测图上仍互相平行、长度相等。轴测图虽不符合近大远小的视觉习惯,但仍具有很强的直观性,所以在工程上得到广泛应用。3、标高投影图用正投影法将局部地面的等高线投射在水平的投影面上,并标注出各等高线的高程,从而表达该局部的地形。这种用标高来表示地面形状的正投影图,称为标高投影图,如图2-5所示。图2-5标高投影图图2-6正投影图4.正投影图根据正投影法所得到的图形称为正投影图。如图2-6所示为房屋(模型)的正投影图。正投影图直观性不强,但能正确反映物体的形状和大小,并且作图方便,度量性好,所以工程上应用最广。绘制房屋建筑图主要用正投影,今后不作特别说明,“投影”即指“正投影”。222.2点的投影一、内容:1、点在三投影面体系中第一分角的投影;2、两点的相对位置。二、要求及重点:1、要求了解三投影面体系;2、掌握投影的特性;3、根据点的坐标,判定点的类型。4、掌握点的相对位置关系;5、了解重影点概念,判断重影点的可见性。三、教学方式:1、利用教具、模型使学生在头脑中形成空间印象,做到平面投影与实际空间中的对应关系;2、利用例题使学生掌握并知道如何利用这些原理、概念;3、通过课上实际绘制,使学生更加深理解绘图过程及技巧。四、作业:布置点投影的作业。232.2点的投影一、投影的形成与特性1、三个互相垂直的投影面V、H、W,组成一个三投影面体系,将空间划分为八个分角。V面称为正立投影面,简称正面;H面称为水平投影面,简称水平面;W面称为侧立投影面,简称侧面。规定三个投影轴OX、OY、OZ向左、向前、向上为正,在三条投影轴都是正相的投影面之间的空间第一分角。图2-7三投影面体系以及八个分角的划分第一分角内的空间点A分别向三个投影面H、V、W作水平投影(H面投影)、正面投影(V面投影)、侧面投影(W面投影),用相应的小写字母a、小写字母加一撇aˊ、小写字母加两撇a″作为投影符号。(a)轴测图(b)展开投影图(c)投影图图2-8点的三面投影2、点的投影(例如A点)具有下述投影特性:(1)点的投影连线垂直于投影轴。(2)点的投影与投影轴的距离,反映该点的坐标,也就是该点与相应的投影面的距离。(a)轴测图(b)投影图图2-9点的投影特性24[例2-1]已知空间点B的坐标为X=12,Y=10,Z=15,也可以写成B(12、10、15)。单位为mm(下同)。求作B点的三投影。1、分析已知空间点的三点坐标,便可作出该点的两个投影,从而作出另一投影。(a)(b)(c)图2-10由点的坐标作三面投影2、作图①画投影轴,在OX轴上由O点向左量取12,定出bX,过bX作OX轴的垂线,如图2-10(a)。②在OZ轴上由O点向上量取15,定出bZ,过bZ作OZ轴垂线,两条线交点即为bˊ,如图2-10(b)。③在bˊbX的延长线上,从bX向下量取10得b;在bˊbZ的延长线上,从bZ向右量取10得b″。或者由bˊ和b用图2-10(c)所示的方法作出b″。点与投影面的相对位置有四类:空间点;投影面上的点;投影轴上的点;与原点O重合的点。二、两点的相对位置1、两点的相对位置是指空间两个点的上下、左右、前后关系,在投影图中,是以它们的坐标差来确定的。2、两点的V面投影反映上下、左右关系;两点的H面投影反映左右、前后关系;两点的W面投影反映上下、前后关系。[例2-2]已知空间点C(15,8,12),D点在C点的右方7,前方5,下方6。求作D点的三投影。分析D点在C点的右方和下方,说明D点的X、Z坐标小于C点的X、Z坐标;D点在C点的前方,说明D点的Y坐标大于C点的Y坐标。可根据两点的坐标差作出D点的三投影。作图:如图2-11。(a)(b)(c)(d)图2-11求作D点的三投影253、重影点:若两个点处于垂直于某一投影面的同一投影线上,则两个点在这个投影面上的投影便互相重合,这两个点就称为对这个投影面的重影点。图2-12重影点的投影262.3直线的投影一、内容:1、直线的类型;2、直线的投影特性;3、求一般位置直线的实长与倾角;4、直线上点的投影;5、两直线的相对位置;6、一边平行与投影面的直角的投影。二、要求及重点:掌握上述几部分内容的基本概念、原理,并应用。三、教学方式:1、通过教具、模型使学生在头脑中形成空间概念,做到平面投影与空间的转换;2、利用例题,使学生掌握、运用这些原理、方法、技巧;3、通过绘制,使学生对点的投影有更加深刻的理解。四、作业:布置相关直线投影的作业,巩固知识,灵活运用。272.3直线的投影空间直线与投影面的相对位置有三种:投影面平行线特殊位置直线投影面垂直线一般位置直线一、特殊位置直线及其投影特性1、投影面平行线只平行于一个投影面,而对另外两个投影面倾斜的直线称为投影面平行线。投影面平行线又有三种位置:水平线:平行于水平面正平线:平行于正平面侧平线;平行于侧面投影面平行线的投影特性见表2-1。直线对投影面所夹的角即直线对投影面的倾角,α、β、γ分别表示直线对H面、V面和W面的倾角。表2-1投影面平行线的投影特性名称轴测图投影图投影特性正平线1、ɑ/b/反映真长和α、γ角。2、ɑb//OX,ɑ//b////OZ,且长度缩短。水平线1、cd反映真长和β、γ角。2、c/d///OX,c//d////OYW,且长度缩短。28侧平线1、e//f//反映真长和α、β角。2、ef//OYH,e/f///OZ,且长度缩短。2、投影面垂直线垂直于一个投影面,与另外两个投影面平行的直线,称为投影面垂直线。投影面垂直线也有三种位置:铅垂线:垂直于水平面的直线正垂线:垂直于正面的直线侧垂线:垂直于侧面的直线投影面垂直线的投影特性见表2-2。表2-2投影面垂直线的投影特性名称轴测图投影图投影特性正垂线1、ɑ/b/积聚成一点。2、ɑb//OYH,ɑ//b////OYW,且反映真长。铅垂线1、cd积聚成一点。2、c/d///OZ,c//d////OZ,且反映真长。侧垂线1、e//f//积聚成一点。2、ef//OX,e/f///OX,且反映真长。29二、一般位置直线及其真长与倾角1、一般位置直线既不平行也不垂直于任何一个投影面,即与三个投影面都处于倾斜位置的直线。2、一般位置直线的投影特性:三个投影都倾斜于投影轴,长度缩短,不能直接反映直线与投影面的真实倾角。(a)(b)图2-13一般位置直线求作一般位置直线的真长和倾角,可用图2-14所示的直角三角形法。(a)作图原理(b)求真长和α角(c)求真长和β角图2-14用直角三角形法求直线的真长和倾角三、直线上的点的投影特性1、直线上的点的投影,必在直线的同面投影上;2、若直线不垂直于投影面,则点的投影分割直线线段投影的长度比,都等于点分割直线线段的长度比。[例2-3]如图2-15a所示,已知直线AB求作AB上的C点,使AC:CB=2:3。(a)已知条件(b)作图过程图2-15作分割AB成2:3的C点30[解]根据直线上的点的投影特性,作图过程见图2-15b所示:⑴自a任引一直线,以任意直线长度为单位长度,从a顺次量5个单位,得点1、2、3、4、5。⑵连5与b,作2c//5b,与ab交于c。⑶由c引投影连线,与a′b′交得cˊ。cˊ与c即为所求的C点的两面投影。[例2-4]如图2-16a所示,试判断K点是否在侧平线MN上?[解]可按直线上点的投影特性,用方法一或方法二进行判断。方法一的判断过程如图2-16b所示:⑴加W面,即过O作投影轴OYH、OYW、OZ。⑵由m′n′、mn和k′、k作出m″n″和k″。⑶由于k″不在m″n″上,所以K点不在MN上。方法二的判断过程如图2-16c所示:⑴过m任作一直线,在其上取mk0=mˊkˊ、k0n0=kˊnˊ。⑵分别将k和k0、n和n0连成直线。⑶由于kk0∥nn0,于是mˊkˊ:kˊnˊ≠mk:kn,从而就可立即判断出K点不在MN上。(a)已知条件(b)方法一(c)方法二图2-16判断K点是否在侧平线MN上四、两直线的相对位置两直线的相对位置有三种情况:平行相交共面直线交叉异面直线它们的投影特性列在表2-3中。当两直线处于交叉位置时,有时需要判断可见性,即判断它们的重影点的重合投影的可见性。确定和表达两交叉线的重影点投影可见性的方法是:从两交叉线同面投影的交点,向相邻投影引垂直于投影轴的投影连线,分别与这两交叉线的相邻投影各交得一个点,标注出交点的投影符号。按左遮右、前遮后、上遮下的规定,确定在重影点的投影重合处,是哪一条直线上的点的投影可见。31表2-3不同相对位置的两直线的投影特性相对位置平行相交交叉轴测图投影图相对位置平行相交交叉投影特性同面投影相互平行同面投影都相交,交点符合一点的投影特性,同面投影的交点,就是两直线的交点的投影两直线的投影,既不符合平行两直线的投影特性,又不符合相交两直线的投影特性。同面投影的交点,就是两直线上各一点形成的对这个投影面的重影点的重合的投影。(a)已知条件(b)加W面投影检验(c)用直线上的点的投影特性检验图2-17检验侧平线AB和一般位置直线CD的相对位置五、一边平行于投影面的直角的投影当直角的一边为投影面平行线时,则在它所平行的投影面上的投影,仍为直角。[例2-5]如图2-18a所示,已知交叉两直线AB、CD,作出它们的公垂线MN(M、N分别是公垂线与AB、CD的交点),并求出这两条交叉直线之间的距离。(a)已知条件(b)解题分析(c)作图过程图2-18作交叉线AB、CD的公垂线MN和距离32[解]如图2-18b所示,先进行几何分析和投影分析:公垂线MN是与交叉两直线AB、CD都垂直的直线,垂足M与N之间的距离,即为这两条交叉直线之间的距离。由于图2-18a中给出的直线AB是铅垂线,MN与AB垂直,MN必为水平线。既然MN是水平线,MN与CD垂直,按一边平行于投影面的直角的投影特性,mn也应与cd垂直。由于AB是铅垂线,MN在AB上的垂足M的H面投影m,必积聚在ab上,于是就可由此开始,按上述的几何分析和投影分析逐
本文标题:第二章投影的基本知识和点、线、面的投影
链接地址:https://www.777doc.com/doc-5021553 .html