您好,欢迎访问三七文档
北溟鱼1引物设计首先引物与模板的序列要紧密互补,其次引物与引物之间避免形成稳定的二聚体或发夹结构,再次引物不能在模板的非目的位点引发DNA聚合反应(即错配)。引物设计应注意如下要点:1.引物的长度一般为15-30bp,常用的是18-27(22)bp,但不应大于38,因为过长会导致其延伸温度大于74℃,不适于TaqDNA聚合酶进行反应。2.碱基要随机分布。引物序列在模板内应当没有相似性较高,尤其是3’端相似性较高的序列,否则容易导致错误引发(Falsepriming)。降低引物与模板相似性的一种方法是,引物中四种碱基的分布最好是随机的,不要有聚嘌呤或聚嘧啶的存在。尤其3′端不应超过3个连续的G或C,如GGG或CCC,因这样会使引物在GC富集序列区错误引发。3.引物3’端的末位碱基对Taq酶的DNA合成效率有较大的影响。不同的末位碱基在错配位置导致不同的扩增效率,末位碱基为A的错配效率明显高于其他3个碱基,因此应当避免在引物的3’端使用碱基A。而当末位链为T时,错配的引发效率大大降低,G、C错配的引发效率介于A、T之间,所以3′端最好选择T。非配对结构最好出现在引物中间。另外,引物二聚体或发夹结构也可能导致PCR反应失败,3’端尽量不含互补碱基。5’端序列对PCR影响不太大,因此常用来引进修饰位点或标记物。4.引物序列的GC含量一般为40-60%,过高或过低都不利于引发反应。上下游引物的GC含量不能相差太大。5.引物所对应模板位置序列的Tm值在72℃左右可使复性条件最佳。Tm值的计算有多种方法,如按公式Tm=4(G+C)+2(A+T),在Oligo软件中使用的是最邻近法。6.ΔG值是指DNA双链形成所需的自由能,该值反映了双链结构内部碱基对的相对稳定性。应当选用3’端ΔG值较低(绝对值不超过9),而5’端和中间ΔG值相对较高的引物。引物的3’端的ΔG值过高,容易在错配位点形成双链结构并引发DNA聚合反应。7.引物二聚体及发夹结构的能值过高(超过4.5kcal/mol)易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。北溟鱼28.对引物的修饰一般是在5’端。引物5′端修饰包括:加酶切位点;标记生物素、荧光、地高辛、Eu3+等;引入蛋白质结合DNA序列;引入点突变、插入突变、缺失突变序列;引入启动子序列等。9.引物3′端要避开密码子的第3位。如扩增编码区域,引物3′端不要终止于密码子的第3位,因密码子的第3位易发生简并,会影响扩增的特异性与效率。10.引物自身及引物之间不应存在互补序列。引物自身不应存在互补序列,否则引物自身会折叠成发夹结构(Hairpin)使引物本身复性。这种二级结构会因空间位阻而影响引物与模板的复性结合。引物自身不能有连续4个碱基的互补。两引物之间也不应具有互补性,尤其应避免3′端的互补重叠以防止引物二聚体(Dimer与Crossdimer)的形成。引物之间不能有连续4个碱基的互补。引物二聚体及发夹结构如果不可避免的话,应尽量使其△G值不要过高(应小于4.5kcal/mol)。否则易导致产生引物二聚体带,并且降低引物有效浓度而使PCR反应不能正常进行。11.扩增产物的单链不能形成二级结构。某些引物无效的主要原因是扩增产物单链二级结构的影响,选择扩增片段时最好避开二级结构区域。用有关软件(比如RNAstructure)可以预测估计mRNA的稳定二级结构,有助于选择模板。实验表明,待扩区域自由能(△G°)小于58.6lkJ/mol时,扩增往往不能成功。若不能避开这一区域时,用7-deaza-2′-脱氧GTP取代dGTP对扩增的成功是有帮助的。引物合成1.引物是如何合成的?目前引物合成基本采用固相亚磷酰胺三酯法。DNA合成仪有很多种,主要都是由ABI/PE公司生产,无论采用什么机器合成,合成的原理都相同,主要差别在于合成产率的高低,试剂消耗量的不同和单个循环用时的多少。亚磷酰胺三酯法合成DNA片段,具有高效、快速的偶联以及起始反应物比较稳定的特点。亚磷酰胺三酯法是将DNA固定在固相载体上完成DNA链的合成的,合成的方向是由待合成引物的3'端向5'端合成的,相邻的核苷酸通过3'→5'磷酸二酯键连接。第一步,将预先连接在固相载体CPG上的活性基团被保护的核苷北溟鱼3酸与三氯乙酸反应,脱去其5'-羟基的保护基团DMT,获得游离的5'-羟基;第二步,合成DNA的原料,亚磷酰胺保护核苷酸单体,与活化剂四氮唑混合,得到核苷亚磷酸活化中间体,它的3'端被活化,5'-羟基仍然被DMT保护,与溶液中游离的5'-羟基发生缩合反应。第三步,带帽(capping)反应,缩合反应中可能有极少数5'-羟基没有参加反应(少于2%),用乙酸酐和1-甲基咪唑终止其后继续发生反应,这种短片段可以在纯化时分离掉。第四步,在氧化剂碘的作用下,亚磷酰形式转变为更稳定的磷酸三酯。经过以上四个步骤,一个脱氧核苷酸被连接到固相载体的核苷酸上。再以三氯乙酸脱去它的5'-羟基上的保护基团DMT,重复以上步骤,直到所有要求合成的碱基被接上去。合成过程中可以观察TCA处理阶段的颜色判定合成效率。通过氨水高温处理,连接在CPG上的引物被切下来,通过OPC,PAGE等手段纯化引物,成品引物用C18浓缩,脱盐,沉淀。沉淀后的引物用水悬浮,测定OD260定量,根据定单要求分装。2.引物纯化方式有哪些,如何选择?◆C18柱脱盐:有人称其为简易反相柱,它对DNA有特异性的吸附,可以被有机溶解洗脱,但不会被水洗脱,所以能有效地去除盐分。它不能有效去除比目的片段短的小片段。实际上,它是一种脱盐的作用。这种方法一般不会对普通PCR反应产生影响。对于需要用于测序、克隆的引物不能使用这个级别。◆OPC纯化:OPC纯化是根据DNA保护基(DMTr基)和Cartridge柱中树脂间的亲合力作用的原理进行纯化目的DNA片段。OPC法纯化的DNA纯度大于95%。适用于40mer以下引物的纯化。◆PAGE纯:PAGE纯化法是使用变性聚丙烯酰胺凝胶电泳,对DNA片段进行分离,然后从凝胶中回收目的DNA的方法。PAGE纯化法也是一种非常有效的DNA纯化方法,纯化后的DNA纯度大于95%,对长链OligoDNA(大于50mer)的纯化特别有效。◆HPLC纯化:HPLC纯化是使用高效液相色谱的原理,对DNA片段进行纯化。纯度可以大于99%。主要用于短链和修饰引物的纯化。该法的弱点是成本较高,批量生产效率不高。北溟鱼43.引物的OD数如何定量?引物合成引物OD数是这样测定的:用紫外分光光度计,波长260nm,石英比色杯,光程为1厘米,测定溶液的光密度。测定时溶液的光密度最好稀释到0.2-1.0之间。DNA干粉用一定体积的水充分振荡溶解以后,用1ml水稀释测OD值。需要根据稀释倍数换算出母液的OD值。4.定量不准是怎么回事儿?(1)生产人员定量错误。(2)分装没有问题,但引物抽干或收样过程中,引物干粉可能意外丢失。(3)系统误差,10%左右为允许误差。引物工作浓度范围很宽,少许偏差不影响实验。(4)用户收到引物干粉时,打开引物管盖前没有离心或其他误操作导致引物干粉部分丢失。验证标2OD引物量是否准确,简单的做法是:加入1ml水,彻底溶解混匀后,取100ul,加入900ul水,用光径为1cm的石英比色杯,波长260nm,此时光吸收的读数为0.2。5.需要什么级别的引物?引物常用的纯化方式C18脱盐,OPC纯化,PAGE纯化,HPLC纯化。根据实验需要,确定订购引物的纯度级别。应用引物长度要求纯度级别要求一般PCR扩增45baseOPC45basePAGE诊断PCR扩增40baseOPC,PAGEDNA测序20base左右OPC亚克隆,点突变等根据实验要求定OPC,PAGE,HPLC基因构建(全基因合成)根据实验要求定PAGE反义核酸根据实验要求定PAGE修饰引物根据实验要求定PAGE,HPLC6.最长可以合成多长的引物?引物越长,出现问题的概率就越大。我们合成过120base的引物,但是产率很低。除非需要,建议合成片段长度不要超过80mer,按照目前的引物合成效率,80mer的粗产品,全长(还不一定正确)引物的百分北溟鱼5比不会超过40%,后续处理还有丢失很多,最后的产量是很低。7.需要合成多少OD数?根据实验目的确定。一般PCR扩增,2OD引物,可以做200-500次50ul标准PCR反应。如果是做基因拼接或退火后做连接,1OD就足够了。但是有些研究人员,就做几次PCR,但是却要5-10OD。做全基因构建的引物都比较长,但是我们有些研究人员也要求高OD数。片段越长,最后全长得率就越低,出错的几率就越大。超出需要之外的OD数要求,其实也是对社会资源的一种浪费,同时也从一个侧面反映了部分研究人员,特别是新手的自信心不足,总觉得需要重复多次才能成功。8.如何检测引物的纯度?实验室方便的作法是用PAGE方法。使用加有7M尿素的16%的聚丙烯酰胺凝胶进行电泳。取0.2-0.5OD的引物,用尿素饱和液溶解或引物溶液中加入尿素干粉直到饱和,上样前加热变性(95℃,2mins)。加入尿素的目的一是变性,二是增加样品比重,容易加样。600V电压进行电泳,一定时间后(约2-3小时),剥胶,用荧光TLC板在紫外灯下检测带型,在主带之下没有杂带,说明纯度是好的。如果条件许可,也可以用EB染色或银染方式染色。9.如何计算引物的浓度?引物保存在高浓度的状况下比较稳定。引物一般配制成10-50pmol/ul。溶解前您需要核对合成报告单和引物标签上的引物OD数是否一致。一般情况下,我们建议将引物的浓度配制成50pmol/ul,加水的体积(微升)按下列方式计算:V(微升)=OD数*(乘)33*(乘)*(乘)20000/(除)引物的分子量。引物的分子量可以从合成报告单上获得。如果需要配制成其他浓度,按上述公式换算。注意:1OD260=33ug/ml.10.如何计算引物的Tm值?引物设计软件都可以给出Tm,引物长度,碱基组成,引物使用缓冲的离子强度有关。长度为25mer以下的引物,Tm计算公式为:Tm=4℃(G+C)+2℃(A+T)对于更长的寡聚核苷酸,Tm计算公式为:Tm=81.5+16.6xLog10[Na+]+0.41(%GC)–600/size北溟鱼6公式中,Size=引物长度。11.引物(含修饰)的分子量是如何确定的?非修饰的引物的MolecularWeight在随引物提供的报告单上都有明确的标示。如果需要估计一个引物的分子量按每个碱基的平均分子量为324.5,引物的分子量=碱基数x碱基的平均分子量。或按下列公式计算MW=(NA*WA)+(NC*WC)+(NG*WG)+(NT*WT)+(Nmod*Wmod)+(Nx*Wx)+(Ni*Wi)+16*Ns–62.NA,NG,NC,NT,Ni分别为引物中碱基A或G或C或T或I的数量,WA,WC,WG,W,Wi分别为引物中碱基A或G或C或T或I的分子量,Nmod,Wmod分别为修饰基团的数目和分子量。对于混合碱基的分子量为混合碱基的分子量总合除以混合数,例如G+A混合的分子量为(313.21+329.21)/2=321.21。Ns为硫代数目,硫代每个位置增加分子量16。常规碱基分子量BaseMolecularWeightA313.21C289.18G329.21T304.19I314.2U290.17常规修饰基团分子量5’-Biotin405.453’-TAMARA623.605’-(6FAM)537.463’-Dabsyl498.495’-HEX744.133’-(6FAM)569.465’-TET675.243’-AminoModifierC3153.075’-Cy5533.633’-AminoModifierC7209.185’-Cy3507.593’-ThiolModifierC3154.1212.如何溶解引物?干燥后的引物质地非常疏松,开盖前最好离心一下,或管垂直向上在桌面上敲敲,将引物粉末收集到管底。根据计算出的体积加入去离子无菌水或10mMTri
本文标题:引物设计注意事项
链接地址:https://www.777doc.com/doc-5021976 .html