您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > 数学:2.2.2《平面与平面平行的判定》课件(新人教A版必修2)
新课标人教版课件系列《高中数学》必修22.2.2《平面与平面平行的判定》教学目标•理解并掌握两平面平行的判定定理。会用这个定理证明两个平面的平行。•教学重点:两个平面平行的判定定理及应用。•教学难点:两个平面平行的证明。复习回顾:平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行.(2)直线与平面平行的判定定理:(1)定义法;ba////abaab线线平行线面平行1.到现在为止,我们一共学习过几种判断直线与平面平行的方法呢?(1)平行(2)相交α∥βa复习回顾:怎样判定平面与平面平行呢?2.平面与平面有几种位置关系?分别是什么?生活中有没有平面与平面平行的例子呢?(1)三角板或课本的一条边所在直线与桌面平行,这个三角板或课本所在平面与桌面平行吗?(2)三角板或课本的两条边所在直线分别与桌面平行,情况又如何呢?教室的天花板与地面给人平行的感觉,前后两块黑板也是平行的。当三角板的两条边所在直线分别与地面平行时,这个三角板所在平面与地面平行。(1)平面内有一条直线与平面平行,,平行吗?(2)平面内有两条直线与平面平行,,平行吗?(1)中的平面α,β不一定平行。如图,借助长方体模型,平面ABCD中直线AD平行平面BCC'B',但平面ABCD与平面BCC'B'不平行。(2)分两种情况讨论:如果平面β内的两条直线是平行直线,平面α与平面β不一定平行。如图,AD∥PQ,AD∥平面BCC’B’,PQ∥BCC’B’,但平面ABCD与平面BCC’B’不平行。PQ如果平面β内的两条直线是相交的直线,两个平面会不会一定平行?直线的条数不是关键直线相交才是关键如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行两个平面平行的判定定理:线不在多,重在相交符号表示:a,b,ab=P,a,b图形表示:abP判断下列命题是否正确,并说明理由.(1)若平面内的两条直线分别与平面平行,则与平行;(2)若平面内有无数条直线分别与平面平行,则与平行;(3)平行于同一直线的两个平面平行;(4)两个平面分别经过两条平行直线,这两个平面平行;(5)过已知平面外一条直线,必能作出与已知平面平行的平面.×××××例1:已知正方体ABCD-A1B1C1D1,求证:平面AB1D1//平面C1BD证明:因为ABCD-A1B1C1D1为正方体,所以D1C1∥A1B1,D1C1=A1B1又AB∥A1B1,AB=A1B1,∴D1C1∥AB,D1C1=AB,∴D1C1BA是平行四边形,∴D1A∥C1B,又D1A平面C1BD,CB平面C1BD.由直线与平面平行的判定,可知同理D1B1∥平面C1BD,又D1A∩D1B1=D1,所以,平面AB1D1∥平面C1BD。D1A∥平面C1BD,变式:在正方体ABCD-A1B1C1D1中,若M、N、E、F分别是棱A1B1,A1D1,B1C1,C1D1的中点,求证:平面AMN//平面EFDB。ABCA1B1C1D1DMNEF线面平行面面平行线线平行第一步:在一个平面内找出两条相交直线;第二步:证明两条相交直线分别平行于另一个平面。第三步:利用判定定理得出结论。练一练,巩固新知:P58练习1,2,3题1、如图:三棱锥P-ABC,D,E,F分别是棱PA,PB,PC中点,求证:平面DEF∥平面ABC。PDEFABC2、如图,B为△ACD所在平面外一点,M,N,G分别为△ABC,△ABD,△BCD的重心,求证:平面MNG∥平面ACD。BACDPDPEPFPAPBPCN·M··G小结:1、面面平行的定义;2、面面平行的判定定理;3、面面平行判定定理的应用:要证面面平行,只要证线面平行,而要证线面平行,只要证线线平行。在立体几何中,往往通过线线、线面、面面间的位置关系的转化使问题得到解决。作业布置:第62页习题2.2A组第7题。
本文标题:数学:2.2.2《平面与平面平行的判定》课件(新人教A版必修2)
链接地址:https://www.777doc.com/doc-5024239 .html