您好,欢迎访问三七文档
当前位置:首页 > IT计算机/网络 > 数据库 > Nonparametric Volatility Density Estimation
NonparametriVolatilityDensityEstimationBertvanEs,PeterSpreijKorteweg-deVriesInstituteforMathematisUniversityofAmsterdamPlantageMuidergraht241018TVAmsterdamTheNetherlandsHarryvanZantenCentrumvoorWiskundeenInformatiaKruislaan4131098SJAmsterdamTheNetherlandsJuly19,2001AbstratWeonsidertwokindsofstohastivolatilitymodels.Bothkindsofmodelsontainastationaryvolatilityproess,thedensityofwhih,ata xedinstantintime,weaimtoestimate.Wedisussdisretetimemodelswhereforinstanealogpriepro-essismodeledastheprodutofavolatilityproessandi.i.d.noise.Wealsoonsidersamplesofertainontinuoustimedi usionproesses.Thesampledtimeinstantswillbeequidistantwithvanishingdistane.AFouriertypedeonvolutionkerneldensityestimatorbasedonthelogarithmofthesquaredproessesisproposedtoestimatethevolatil-itydensity.Expansionsofthebiasandboundsonthevarianesarederived.Keywords:stohastivolatilitymodels,densityestimation,kerneles-timator,deonvolution,mixingAMSsubjetlassi ation:62G07,62M07,62P2011IntrodutionLetSdenotethelogprieproessofsomestokina nanialmarket.ItisoftenassumedthatSanbemodelledasthesolutionofastohastidi erentialequationor,moregeneral,asanIt^odi usionproess.SoweassumethatweanwritedSt=btdt+ tdWt;S0=0;(1.1)or,inintegralform,St=Zt0bsds+Zt0 sdWs;(1.2)whereWisastandardBrownianmotionandtheproessesband areassumedtosatisfyertainregularityonditions(seeKaratzasandShreve(1991))tohavetheintegralsin(1.2)wellde ned.Inthe nanialontext,theproess isalledthevolatilityproess.Inthispaperwemodel asastritlystationarypositiveproesssat-isfyingamixingondition,forexampleanergodidi usionon[0;1)andwemaketheassumptionthat isindependentofW.Wewillassumethattheonedimensionalmarginaldistributionof hasadensitywithrespettotheLebesguemeasureon(0;1).Thisistypiallythease,sineinallstohastivolatilitymodelsthatareproposedintheliterature,theevolutionof ismodelledbyastohastidi erentialequation,mostlyintermsof 2.Itisthepurposeofthepapertoestimatethe(marginal)invariantdensityofthevolatilityproess .Themethodthatwewillusefoussesontheestimationofthemarginaldensityoflog 2t.Thedensityof tanthenbeobtainedbyasimpletransformationbyusingtheonventionthat isthesquarerootof 2.Examplesofsuhvolatilitymodels,allofthemofdi usiontype,aregivenbelow.Theb1;b2andÆarerealonstantsandBisastandardBrow-nianmotion(independentofW).dlog 2t=(b1 b2log 2t)dt+ÆdBt(1.3)d 2t=(b1 b2 2t)dt+Æ tdBt(1.4)d 2t=(b1 b2 2t)dt+Æ 2tdBt(1.5)Inequation(1.3)anOrnstein-Uhlenbekproessisusedtomodeltheloga-rithmofthevolatilityandwasproposedasamodelbyWiggins(1987).Themodelofequation(1.4)wassuggestedbyHeston(1993).ItisthesameastheonethatCox,IngersollandRoss(1985)usedforthetermstrutureofinterestrates.Finally,equation(1.5)arisesinanaturalwayasalimitofaGARCH(1,1)proess,seebelowforanexplanationofthisterminology.Intheexamplesabovetheonditionstoensureanergodistationarysolutionaresatis edbyallofthemforproperhoiesoftheparameters.2Moreover,inalltheseasesweanharaterizetheinvariantdistribu-tion.Underappropriateonditions,seee.g.GihmanandSkorohod(1972)orSkorokhod(1989),forstohastidi erentialequationsofthetypedXt=b(Xt)dt+a(Xt)dBtwhereXttakesitsvaluesinanopen(boundedorunbounded)interval(l;r)theinvariantdensityisuptoamultipliativeonstantequaltox7!1a2(x)exp 2Zxx0b(y)a2(y)dy ;(1.6)wherex0isanarbitraryelementofthestatespae(l;r).Usingthisfor-mulaandsimplyfyingtotheasewhereÆ=1,wegetforthemodelofequation(1.3)thatlog 2hasaninvariantN(b1b2;12b2)distribution.Forthemodelofequation(1.4)we ndthat 2hasaninvariant (2b1;2b2)distri-butionandforthemodelofequation(1.5)theinvariantdistributionof 2isinversegammawithdensitywhihisproportionaltoy7!e 2b1=yy 2b2 2.Theseexamplesshowthatsomeofthemodelsthatareusedtodesribethevolatilitydisplayratherdi erentinvariantdistributions.Thisobserva-tionsupportsourpointofviewthatnonparametriproeduresarebyallmeanssensibletoolstogetsomeinsightinthebehaviourofthevolatility.Moreover,alltheinvariantdistributionsgivenintheexamplesaboveareunimodal.Sineitisknownthatvolatilitylusteringisanoftenour-ringphenomenon,itishardtobelievethatthisanbeexplainedbyanyofthesemodels.Instead,onewouldexpetinsuhaaseforinstaneabimodaldistributionwithpeaksatertainlevelsoflowandhighvolatility.Nonparametridensityestimationouldperhapsrevealsuhashapeoftheinvariantdensityofthevolatility.Ourmaingoalisestimatingthedensityfifwedon’thaveaontinuousreordofobservationsofS,butweonlyobserveSatthedisretetimeinstants,sayattimes0, ,2 ;:::;n .Toillustratetheunderlyingideas,weonsider(1.1)but rstwithoutthedriftterm,soweassumetohavedSt= tdWt;S0=0:Let’skeepthetime betweentheobservations xed(butsmall)forthemoment.Fori=1;2;:::wework,likeinGenon-Catalotetal.(1998,1999),withthenormalizedinrementsX i=1p (Si S(i 1) ):Forsmall ,wehavetheroughapproximationX i=1p Zi (i 1) tdWt (i 1) 1p (Wi W(i 1) )= (i 1) Z i;3wherefori=1;2;:::wede neZ i=1p (Wi W(i 1) ):BytheindependeneandstationarityofBrownianinrements,thesequeneZ 1;Z 2;:::isani.i.d.sequeneofstandardnormalrandomvariables.More-over,thesequeneisindependentoftheproess byassumption.Itisthereforeusefulto rstanalyzedisretetimemodelsthatexhibitasimilarstruture
本文标题:Nonparametric Volatility Density Estimation
链接地址:https://www.777doc.com/doc-5034786 .html