您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 第八章----假设检验
第八章假设检验假设检验的基本问题一个总体参数的检验两个总体参数的检验学习目标假设检验的基本思想和原理假设检验的步骤一个总体参数的检验两个总体参数的检验P值的计算与应用用Excel进行检验正常人的平均体温是37oC吗?当问起健康的成年人体温是多少时,多数人的回答是37oC,这似乎已经成了一种共识。下面是一个研究人员测量的50个健康成年人的体温数据37.136.936.937.136.436.936.636.236.736.937.636.737.336.936.436.137.136.636.536.737.136.236.337.536.937.036.736.937.037.136.637.236.436.637.336.137.137.036.636.936.737.236.337.136.736.837.037.036.137.0正常人的平均体温是37oC吗?根据样本数据计算的平均值是36.8oC,标准差为0.36oC根据参数估计方法得到的健康成年人平均体温的95%的置信区间为(36.7,36.9)。研究人员发现这个区间内并没有包括37oC因此提出“不应该再把37oC作为正常人体温的一个有任何特定意义的概念”我们应该放弃“正常人的平均体温是37oC”这个共识吗?本章的内容就将提供一套标准统计程序来检验这样的观点假设检验的基本原理怎样提出假设?怎样做出决策?怎样表述决策结果?假设检验怎样提出假设?假设检验的基本原理什么是假设?(hypothesis)在参数检验中,对总体参数的具体数值所作的陈述就一个总体而言,总体参数包括总体均值、成数、方差等分析之前必需陈述什么是假设检验?(hypothesistest)1.先对总体的参数(或分布形式)提出某种假设,然后利用样本信息判断假设是否成立的统计方法2.有参数检验和非参数检验3.逻辑上运用反证法,统计上依据小概率原理小概率是在一次试验中,一个几乎不可能发生的事件发生的概率在一次试验中小概率事件一旦发生,我们就有理由拒绝原假设原假设(nullhypothesis)1.又称“0假设”,研究者想收集证据予以反对的假设,用H0表示2.所表达的含义总是指参数没有变化或变量之间没有关系3.最初被假设是成立的,之后根据样本数据确定是否有足够的证据拒绝它4.总是有符号,或H0:=某一数值H0:某一数值H0:某一数值例如,H0:10cm1.也称“研究假设”,研究者想收集证据予以支持的假设(期望出现的结论作为备选假设),用H1或Ha表示2.所表达的含义是总体参数发生了变化或变量之间有某种关系3.备择假设通常用于表达研究者自己倾向于支持的看法,然后就是想办法收集证据拒绝原假设,以支持备择假设4.总是有符号≠,或H1:某一数值H1:某一数值H1:某一数值备择假设(alternativehypothesis)假设检验中的两类错误(决策风险)假设检验中的两类错误1.第一类错误(弃真错误)原假设为真时拒绝原假设会产生一系列后果第一类错误的概率为被称为显著性水平2.第二类错误(取伪错误)原假设为假时接受原假设第二类错误的概率为(Beta)两类错误的控制一般来说,对于一个给定的样本,如果犯第Ι类错误的代价比犯第Ⅱ类错误的代价相对较高,则将犯第Ⅰ类错误的概率定得低些较为合理;反之,如果犯第Ι类错误的代价比犯第Ⅱ类错误的代价相对较低,则将犯第Ⅰ类错误的概率定得高些一般来说,发生哪一类错误的后果更为严重,就应该首要控制哪类错误发生的概率。但由于犯第Ι类错误的概率是可以由研究者控制的,因此在假设检验中,人们往往先控制第Ι类错误的发生概率错误与错误的关系:与的关系就像跷跷板,小就大,大就小,同时减小两类错误惟一的办法就是增加样本容量。假设检验的流程提出假设确定适当的检验统计量规定显著性水平计算检验统计量的值作出统计决策什么是检验统计量?1.用于假设检验决策的统计量2.选择统计量的方法与参数估计相同,需考虑是大样本还是小样本总体方差已知还是未知3.检验统计量的基本形式为确定适当的检验统计量nXZ0规定显著性水平(significantlevel)什么是显著性水平?1.是一个概率值2.原假设为真时,拒绝原假设的概率被称为抽样分布的拒绝域3.表示为(alpha)常用的值有0.01,0.05,0.104.由研究者事先确定作出统计决策1.计算检验的统计量2.根据给定的显著性水平,查表得出相应的临界值z或z/2,t或t/23.将检验统计量的值与水平的临界值进行比较4.得出拒绝或不拒绝原假设的结论统计量决策规则给定显著性水平,查表得出相应的临界值z或z/2,t或t/2将检验统计量的值与水平的临界值进行比较作出决策双侧检验:I统计量I临界值,拒绝H0左侧检验:统计量-临界值,拒绝H0右侧检验:统计量临界值,拒绝H0利用P值进行决策什么是P值?(P-value)1.是一个概率值2.如果原假设为真,P-值是抽样分布中大于或小于样本统计量的概率左侧检验时,P-值为曲线上方小于等于检验统计量部分的面积右侧检验时,P-值为曲线上方大于等于检验统计量部分的面积3.被称为观察到的(或实测的)显著性水平H0能被拒绝的最小值双侧检验的P值/2/2Z拒绝拒绝H0值临界值计算出的样本统计量计算出的样本统计量临界值1/2P值1/2P值左侧检验的P值H0值临界值样本统计量拒绝域抽样分布1-置信水平计算出的样本统计量P值右侧检验的P值H0值临界值拒绝域抽样分布1-置信水平计算出的样本统计量P值利用P值进行检验(决策准则)1.单侧检验若p-值,不拒绝H0若p-值,拒绝H02.双侧检验若p-值/2,不拒绝H0若p-值/2,拒绝H0双侧检验和单侧检验备择假设没有特定的方向性,并含有符号“”的假设检验,称为双侧检验或双尾检验(two-tailedtest)备择假设具有特定的方向性,并含有符号“”或“”的假设检验,称为单侧检验或单尾检验(one-tailedtest)备择假设的方向为“”,称为左侧检验备择假设的方向为“”,称为右侧检验双侧检验与单侧检验双侧检验与单侧检验(假设的形式)假设研究的问题双侧检验左侧检验右侧检验H0=000H1≠000双侧检验(原假设与备择假设的确定)1.属于决策中的假设检验2.不论是拒绝H0还是不拒绝H0,都必需采取相应的行动措施3.例如,某种零件的尺寸,要求其平均长度为10cm,大于或小于10cm均属于不合格我们想要证明(检验)大于或小于这两种可能性中的任何一种是否成立4.建立的原假设与备择假设应为H0:10H1:10双侧检验(显著性水平与拒绝域)抽样分布H0值临界值临界值/2/2样本统计量拒绝域拒绝域1-置信水平单侧检验(显著性水平与拒绝域)H0值临界值样本统计量拒绝域抽样分布1-置信水平3)显著性水平和拒绝域(右侧检验)H0:0H1:00临界值样本统计量拒绝H0抽样分布1-置信水平拒绝H0P值决策与统计量的比较拒绝H0的两个统计量的不同显著性Z拒绝H00统计量1P1值统计量2P2值拒绝H0临界值假设检验步骤的总结1.陈述原假设和备择假设2.从所研究的总体中抽出一个随机样本3.确定一个适当的检验统计量,并利用样本数据算出其具体数值4.确定一个适当的显著性水平,并计算出其临界值,指定拒绝域5.将统计量的值与临界值进行比较,作出决策统计量的值落在拒绝域,拒绝H0,否则不拒绝H0也可以直接利用P值作出决策总体均值的检验一个总体参数的检验总体均值的检验(2已知或2未知大样本)1.假定条件总体服从正态分布若不服从正态分布,可用正态分布来近似(n30)2.使用Z-统计量2已知:2未知:)1,0(~0NnXZ)1,0(~0NnSXZ总体均值检验(大样本检验方法的总结)假设双侧检验左侧检验右侧检验假设形式H0:=0H1:0H0:0H1:0H0:0H1:0统计量已知:未知:拒绝域P值决策拒绝H0nxz0nsxz02/zzzzzzP总结2已知均值的检验(例题分析)【例】某机床厂加工一种零件,根据经验知道,该厂加工零件的椭圆度近似服从正态分布,其总体均值为0=0.081mm,总体标准差为=0.025。今换一种新机床进行加工,抽取n=200个零件进行检验,得到的椭圆度为0.076mm。试问新机床加工零件的椭圆度的均值与以前有无显著差异?(=0.05)双侧检验2已知均值的检验(例题分析)H0:=0.081H1:0.081=0.05n=200临界值(s):检验统计量:Z01.96-1.96.025拒绝H0拒绝H0.025决策:结论:在=0.05的水平上拒绝H0有证据表明新机床加工的零件的椭圆度与以前有显著差异83.2200025.0081.0076.00nxz总体均值的检验(2已知)(例题分析—大样本)【例】一种罐装饮料采用自动生产线生产,每罐的容量是255ml,标准差为5ml。为检验每罐容量是否符合要求,质检人员在某天生产的饮料中随机抽取了40罐进行检验,测得每罐平均容量为255.8ml。取显著性水平=0.05,检验该天生产的饮料容量是否符合标准要求?双侧检验总体均值的检验(2已知)(例题分析-大样本)H0:=255H1:255=0.05n=40临界值(c):检验统计量:决策:结论:用Excel中的【NORMSDIST】函数得到的双尾检验P=0.312945不拒绝H0没有证据表明该天生产的饮料不符合标准要求01.14052558.2550nxzz01.96-1.960.025拒绝H0拒绝H00.025总体均值的检验(2未知)(例题分析—大样本)【例】一种机床加工的零件尺寸绝对平均误差为1.35mm。生产厂家现采用一种新的机床进行加工以期进一步降低误差。为检验新机床加工的零件平均误差与旧机床相比是否有显著降低,从某天生产的零件中随机抽取50个进行检验。利用这些样本数据,检验新机床加工的零件尺寸的平均误差与旧机床相比是否有显著降低?(=0.01)左侧检验50个零件尺寸的误差数据(mm)1.261.191.310.971.811.130.961.061.000.940.981.101.121.031.161.121.120.951.021.131.230.741.500.500.590.991.451.241.012.031.981.970.911.221.061.111.541.081.101.641.702.371.381.601.261.171.121.230.820.86总体均值的检验(例题分析—大样本)H0:1.35H1:1.35=0.01n=50临界值(c):检验统计量:拒绝H0新机床加工的零件尺寸的平均误差与旧机床相比有显著降低决策:结论:6061.250365749.035.13152.1z-2.33z0拒绝H00.01总体均值的检验(P值的图示)计算出的样本统计量=2.6061P=0.004579Z拒绝H00临界值P值总体均值的检验(2未知)(例题分析)【例】某一小麦品种的平均产量为5200kg/hm2。一家研究机构对小麦品种进行了改良以期提高产量。为检验改良后的新品种产量是否有显著提高,随机抽取了36个地块进行试种,得到的样本平均产量为5275kg/hm2,标准差为120/hm2。试检验改良后的新品种产量是否有显著提高?(=0.05)右侧检验总体均值的检验(2未知)(例题分析)H0:5200H1:5200=0.05n=36临界值(
本文标题:第八章----假设检验
链接地址:https://www.777doc.com/doc-5041046 .html