您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 等差数列知识点整理与经典例题解
等差数列复习一、等差数列的有关概念:1、等差数列的判断方法:定义法1(nnaadd为常数)或11(2)nnnnaaaan。如设{}na是等差数列,求证:以bn=naaan21*nN为通项公式的数列{}nb为等差数列。2、等差数列的通项:1(1)naand或()nmaanmd。如(1)等差数列{}na中,1030a,2050a,则通项na(答:210n);(2)首项为-24的等差数列,从第10项起开始为正数,则公差的取值范围是______(答:833d)3、等差数列的前n和:1()2nnnaaS,1(1)2nnnSnad。如(1)数列{}na中,*11(2,)2nnaannN,32na,前n项和152nS,则1a=_,n=_(答:13a,10n);(2)已知数列{}na的前n项和212nSnn,求数列{||}na的前n项和nT(答:2*2*12(6,)1272(6,)nnnnnNTnnnnN).4、等差中项:若,,aAb成等差数列,则A叫做a与b的等差中项,且2abA。提醒:(1)等差数列的通项公式及前n和公式中,涉及到5个元素:1a、d、n、na及nS,其中1a、d称作为基本元素。只要已知这5个元素中的任意3个,便可求出其余2个,即知3求2。(2)为减少运算量,要注意设元的技巧,如奇数个数成等差,可设为…,2,,,,2adadaadad…(公差为d);偶数个数成等差,可设为…,3,,,3adadadad,…(公差为2d)5、等差数列的性质:(1)当公差0d时,等差数列的通项公式11(1)naanddnad是关于n的一次函数,且斜率为公差d;前n和211(1)()222nnnddSnadnan是关于n的二次函数且常数项为0.(2)若公差0d,则为递增等差数列,若公差0d,则为递减等差数列,若公差0d,则为常数列。(3)当mnpq时,则有qpnmaaaa,特别地,当2mnp时,则有2mnpaaa.如(1)等差数列{}na中,12318,3,1nnnnSaaaS,则n=____(答:27);(4)若{}na、{}nb是等差数列,则{}nka、{}nnkapb(k、p是非零常数)、*{}(,)pnqapqN、232,,nnnnnSSSSS,…也成等差数列,而{}naa成等比数列;若{}na是等比数列,且0na,则{lg}na是等差数列.如等差数列的前n项和为25,前2n项和为100,则它的前3n和为。(答:225)(5)在等差数列{}na中,当项数为偶数2n时,SSnd偶奇-;项数为奇数21n时,SSa奇偶中,21(21)nSna中(这里a中即na);1-n:nS偶奇:S。如(1)在等差数列中,S11=22,则6a=______(答:2);※(2)项数为奇数的等差数列{}na中,奇数项和为80,偶数项和为75,求此数列的中间项与项数(答:5;31).※(6)若等差数列{}na、{}nb的前n和分别为nA、nB,且()nnAfnB,则2121(21)(21)(21)nnnnnnanaAfnbnbB.如设{na}与{nb}是两个等差数列,它们的前n项和分别为nS和nT,若3413nnTSnn,那么nnba___________(答:6287nn)(7)“首正”的递减等差数列中,前n项和的最大值是所有非负项之和;“首负”的递增等差数列中,前n项和的最小值是所有非正项之和。法一:由不等式组000011nnnnaaaa或确定出前多少项为非负(或非正);法二:因等差数列前n项是关于n的二次函数,故可转化为求二次函数的最值,但要注意数列的特殊性*nN。上述两种方法是运用了哪种数学思想?(函数思想),由此你能求一般数列中的最大或最小项吗?如(1)等差数列{}na中,125a,917SS,问此数列前多少项和最大?并求此最大值。(答:前13项和最大,最大值为169);(2)若{}na是等差数列,首项10,a200320040aa,200320040aa,则使前n项和0nS成立的最大正整数n是(答:4006)※(3)在等差数列na中,10110,0aa,且1110||aa,nS是其前n项和,则()A、1210,SSS都小于0,1112,SS都大于0B、1219,SSS都小于0,2021,SS都大于0C、125,SSS都小于0,67,SS都大于0D、1220,SSS都小于0,2122,SS都大于0(答:B)※(8)如果两等差数列有公共项,那么由它们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数.注意:公共项仅是公共的项,其项数不一定相同,即研究nmab.
本文标题:等差数列知识点整理与经典例题解
链接地址:https://www.777doc.com/doc-5047789 .html